原文地址:http://rdc.taobao.com/blog/cs/?p=162

本文主要介绍zookeeper中zookeeper Server leader的选举,zookeeper在选举leader的时候采用了paxos算法(主要是fast paxos),这里主要介绍其中两种:LeaderElection 和FastLeaderElection.

我们先要清楚以下几点

  • 一个Server是如何知道其它的Server

在zookeeper中,一个zookeeper集群有多少个Server是固定,每个Server用于选举的IP和PORT都在配置文件中

  • 除了IP和PORT能标识一个Server外,还有没有别的方法

每一个Server都有一个数字编号,而且是唯一的,我们根据配置文件中的配置来对每一个Server进行编号,这一步在部署时需要人工去做,需要在存储数据文件的目录中创建一个文件叫myid的文件,并写入自己的编号,这个编号在处理我提交的value相同很有用

  • 成为Leader的必要条件

获得n/2 + 1个Server同意(这里意思是n/2 + 1个Server要同意拥有zxid是所有Server最大的哪个Server)

  • zookeeper中选举采用UDP还是TCP

zookeeper中选举主要是采用UDP,也一种实现是采用TCP,在这里介绍的两种实现采用的是UDP

  • zookeeper中有哪几种状态

LOOKING 初始化状态

LEADING  领导者状态

FOLLOWING  跟随者状态

  • 如果所有zxid都相同(例如: 刚初始化时),此时有可能不能形成n/2+1个Server,怎么办

zookeeper中每一个Server都有一个ID,这个ID是不重复的,而且按大小排序,如果遇到这样的情况时,zookeeper就推荐ID最大的哪个Server作为Leader

  • zookeeper中Leader怎么知道Fllower还存活,Fllower怎么知道Leader还存活

Leader定时向Fllower发ping消息,Fllower定时向Leader发ping消息,当发现Leader无法ping通时,就改变自己的状态(LOOKING),发起新的一轮选举

名词解释

zookeeer Server: zookeeper中一个Server,以下简称Server

zxid(zookeeper transtion id): zookeeper 事务id,他是选举过程中能否成为leader的关键因素,它决定当前Server要将自己这一票投给谁(也就是我在选举过程中的value,这只是其中一个,还有id)

myid/id(zookeeper server id): zookeeper server id ,他也是能否成为leader的一个因素

epoch/logicalclock:他主要用于描述leader是否已经改变,每一个Server中启动都会有一个epoch,初始值为0,当 开始新的一次选举时epoch加1,选举完成时 epoch加1。

tag/sequencer:消息编号

xid:随机生成的一个数字,跟epoch功能相同

Fast Paxos消息流向图与Basic Paxos的对比

消息流向图

  • basic paxos 消息流向图
Client   Proposer      Acceptor     Learner
| | | | | | |
X-------->| | | | | | Request
| X--------->|->|->| | | Prepare(N)//向所有Server提议
| |<---------X--X--X | | Promise(N,{Va,Vb,Vc})//向提议人回复是否接受提议(如果不接受回到上一步)
| X--------->|->|->| | | Accept!(N,Vn)//向所有人发送接受提议消息
| |<---------X--X--X------>|->| Accepted(N,Vn)//向提议人回复自己已经接受提议)
|<---------------------------------X--X Response
| | | | | | |
  • fast paxos消息流向图

没有冲突的选举过程

Client    Leader         Acceptor      Learner
| | | | | | | |
| X--------->|->|->|->| | | Any(N,I,Recovery)
| | | | | | | |
X------------------->|->|->|->| | | Accept!(N,I,W)//向所有Server提议,所有Server收到消息后,接受提议
| |<---------X--X--X--X------>|->| Accepted(N,I,W)//向提议人发送接受提议的消息
|<------------------------------------X--X Response(W)
| | | | | | | |

第一种实现: LeaderElection

LeaderElection是Fast paxos最简单的一种实现,每个Server启动以后都询问其它的Server它要投票给谁,收到所有Server回复以后,就计算出zxid最大的哪个Server,并将这个Server相关信息设置成下一次要投票的Server

 

每个Server都有一个response线程和选举线程,我们先看一下每个线程是做一些什么事情

response线程

它主要功能是被动的接受对方法的请求,并根据当前自己的状态作出相应的回复,每次回复都有自己的Id,以及xid,我们根据他的状态来看一看他都回复了哪些内容

LOOKING状态:

自己要推荐的Server相关信息(id,zxid)

LEADING状态

myid,上一次推荐的Server的id

FLLOWING状态:

当前Leader的id,以及上一次处理的事务ID(zxid)

选举线程

选举线程由当前Server发起选举的线程担任,他主要的功能对投票结果进行统计,并选出推荐的Server。选举线程首先向所有Server发起一次询问(包括自己),被询问方,根据自己当前的状态作相应的回复,选举线程收到回复后,验证是否是自己发起的询问(验证 xid是否一致),然后获取对方的id(myid),并存储到当前询问对象列表中,最后获取对方提议的leader相关信息(id,zxid),并将这些 信息存储到当次选举的投票记录表中,当向所有Server都询问完以后,对统计结果进行筛选并进行统计,计算出当次询问后获胜的是哪一个 Server,并将当前zxid最大的Server设置为当前Server要推荐的Server(有可能是自己,也有可以是其它的Server,根据投票 结果而定,但是每一个Server在第一次投票时都会投自己),如果此时获胜的Server获得n/2 + 1的Server票数, 设置当前推荐的leader为获胜的Server,将根据获胜的Server相关信息设置自己的状态。每一个Server都重复以上流程,直到选出 leader

了解每个线程的功能以后,我们来看一看选举过程

  • 选举过程中,Server的加入

当一个Server启动时它都会发起一次选举,此时由选举线程发起相关流程,那么每个Server都会获得当前zxid最大的哪个Server是谁,如果当次最大的Server没有获得n/2+1个票数,那么下一次投票时,他将向zxid最大的Server投票,重复以上流程,最后一定能选举出一个Leader

  • 选举过程中,Server的退出

只要保证n/2+1个Server存活就没有任何问题,如果少于n/2+1个Server存活就没办法选出Leader

  • 选举过程中,Leader死亡

当选举出Leader以后,此时每个Server应该是什么状态(FLLOWING)都已经确定,此时由于Leader已经死亡我们就不管它,其它的Fllower按正常的流程继续下去,当完成这个流程以后,所有的Fllower都会向Leader发送Ping消息,如果无法ping通,就改变自己的状态为(FLLOWING ==> LOOKING),发起新的一轮选举

  • 选举完成以后,Leader死亡

这个过程的处理跟选举过程中Leader死亡处理方式一样,这里就不再描述

第二种实现: FastLeaderElection

fastLeaderElection是标准的fast paxos的实现,它首先向所有Server提议自己要成为leader,当其它Server收到提议以后,解决epoch和zxid的冲突,并接受对方的提议,然后向对方发送接受提议完成的消息

数据结构

本地消息结构:

static public class Notification {
long leader;  //所推荐的Server id

long zxid;      //所推荐的Server的zxid(zookeeper transtion id)

long epoch;   //描述leader是否变化(每一个Server启动时都有一个logicalclock,初始值为0)

QuorumPeer.ServerState state;   //发送者当前的状态
InetSocketAddress addr;            //发送者的ip地址
}

网络消息结构:

static public class ToSend {

int type;        //消息类型
long leader;  //Server id
long zxid;     //Server的zxid
long epoch;  //Server的epoch
QuorumPeer.ServerState state; //Server的state
long tag;      //消息编号

InetSocketAddress addr;

}

Server具体的实现

每个Server都一个接收线程池(3个线程)和一个发送线程池 (3个线程),在没有发起选举时,这两个线程池处于阻塞状态,直到有消息到来时才解除阻塞并处理消息,同时每个Server都有一个选举线程(可以发起 选举的线程担任);我们先看一下每个线程所做的事情,如下:

被动接收消息端(接收线程池)的处理:

notification: 首先检测当前Server上所被推荐的zxid,epoch是否合法(currentServer.epoch <= currentMsg.epoch && (currentMsg.zxid > currentServer.zxid || (currentMsg.zxid == currentServer.zxid && currentMsg.id > currentServer.id))) 如果不合法就用消息中的zxid,epoch,id更新当前Server所被推荐的值,此时将收到的消息转换成Notification消息放入接收队列中,将向对方发送ack消息

ack:   将消息编号放入ack队列中,检测对方的状态是否是LOOKING状态,如果不是说明此时已经有Leader已经被选出来,将接收到的消息转发成Notification消息放入接收对队列

主动发送消息端(发送线程池)的处理:

notification: 将要发送的消息由Notification消息转换成ToSend消息,然后发送对方,并等待对方的回复,如果在等待结束没有收到对方法回复,重做三次,如果重做次还是没有收到对方的回复时检测当前的选举(epoch)是否已经改变,如果没有改变,将消息再次放入发送队列中,一直重复直到有Leader选出或者收到对方回复为止

ack: 主要将自己相关信息发送给对方

主动发起选举端(选举线程)的处理:

首先自己的epoch 加1,然后生成notification消息,并将消息放入发送队列中,系统中配置有几个Server就生成几条消息,保证每个Server都能收到此消息,如果当前Server的状态是LOOKING就一直循环检查接收队列是否有消息,如果有消息,根据消息中对方的状态进行相应的处理。

LOOKING状态:

首先检测消息中epoch是否合法,是否比当前Server的大,如果比较当前Server的epoch大时,更新epoch,检测是消息中的zxid,id是否比当前推荐的Server大,如果是更新相关值,并新生成notification消息放入发关队列,清空投票统计表; 如果消息小的epoch则什么也不做; 如果相同检测消息中zxid,id是否合法,如果消息中的zxid,id大,那么更新当前Server相关信息,并新生成notification消息放入发送队列,将收到的消息的IP和投票结果放入统计表中,并计算统计结果,根据结果设置自己相应的状态

LEADING状态:

将收到的消息的IP和投票结果放入统计表中(这里的统计表是独立的),并计算统计结果,根据结果设置自己相应的状态

FOLLOWING状态:

将收到的消息的IP和投票结果放入统计表中(这里的统计表是独立的),并计算统计结果,根据结果设置自己相应的状态

了解每个线程的功能以后,我们来看一看选举过程,选举过程跟第一程一样

  • 选举过程中,Server的加入

当一个Server启动时它都会发起一次选举,此时由选举线程发起相关流程,通过将自己的zxid和epoch告诉其它Server,最后每个Server都会得zxid值最大的哪个Server的相关信息,并且在下一次投票时就投zxid值最大的哪个Server,重复以上流程,最后一定能选举出一个Leader

  • 选举过程中,Server的退出

只要保证n/2+1个Server存活就没有任何问题,如果少于n/2+1个Server存活就没办法选出Leader

  • 选举过程中,Leader死亡

当选举出Leader以后,此时每个Server应该是什么状态 (FLLOWING)都已经确定,此时由于Leader已经死亡我们就不管它,其它的Fllower按正常的流程继续下去,当完成这个流程以后,所有的 Fllower都会向Leader发送Ping消息,如果无法ping通,就改变自己的状态为(FLLOWING ==> LOOKING),发起新的一轮选举

  • 选举完成以后,Leader死亡

这个过程的处理跟选举过 程中Leader死亡处理方式一样,这里就不再描述

paxos 实现的更多相关文章

  1. 分布式系列文章——Paxos算法原理与推导

    Paxos算法在分布式领域具有非常重要的地位.但是Paxos算法有两个比较明显的缺点:1.难以理解 2.工程实现更难. 网上有很多讲解Paxos算法的文章,但是质量参差不齐.看了很多关于Paxos的资 ...

  2. 分布式理论之一:Paxos算法的通俗理解

    维基的简介:Paxos算法是莱斯利·兰伯特(Leslie Lamport,就是 LaTeX 中的"La",此人现在在微软研究院)于1990年提出的一种基于消息传递且具有高度容错特性 ...

  3. 分布式系统理论进阶 - Paxos

    引言 <分布式系统理论基础 - 一致性.2PC和3PC>一文介绍了一致性.达成一致性需要面临的各种问题以及2PC.3PC模型,Paxos协议在节点宕机恢复.消息无序或丢失.网络分化的场景下 ...

  4. 分布式系统理论进阶 - Paxos变种和优化

    引言 <分布式系统理论进阶 - Paxos>中我们了解了Basic Paxos.Multi Paxos的基本原理,但如果想把Paxos应用于工程实践,了解基本原理还不够. 有很多基于Pax ...

  5. 【分布式】Zookeeper与Paxos

    一.前言 在学习了Paxos在Chubby中的应用后,接下来学习Paxos在开源软件Zookeeper中的应用. 二.Zookeeper Zookeeper是一个开源的分布式协调服务,其设计目标是将那 ...

  6. 【分布式】Chubby与Paxos

    一.前言 在上一篇理解了Paxos算法的理论基础后,接下来看看Paxos算法在工程中的应用. 二.Chubby Chubby是一个面向松耦合分布式系统的锁服务,GFS(Google File Syst ...

  7. 分布式一致性算法--Paxos

    Paxos算法是莱斯利·兰伯特(Leslie Lamport)1990年提出的一种基于消息传递的一致性算法.Paxos算法解决的问题是一个分布式系统如何就某个值(决议)达成一致.在工程实践意义上来说, ...

  8. Paxos

    Paxos算法原理与推导   Paxos算法在分布式领域具有非常重要的地位.但是Paxos算法有两个比较明显的缺点:1.难以理解 2.工程实现更难. 网上有很多讲解Paxos算法的文章,但是质量参差不 ...

  9. Zookeeper学习之:paxos算法

    paxos算法的重要性众所周知,它给如今的分布式一致性提供了迄今为止最好的解决方案.无论是Lamport自己的论文描述,还是网上的诸多资料,对paxos的描述都是及其简洁的,给人的感觉是paxos看似 ...

  10. paxos(chubby) vs zab(Zookeeper)

    参考: Zookeeper的一致性协议:Zab Chubby&Zookeeper原理及在分布式环境中的应用 Paxos vs. Viewstamped Replication vs. Zab ...

随机推荐

  1. CentOS 命令随笔

     linux下敲命令时:快速删除当前行已经敲的命令: CTR+U  或者 CTR+/                         快速删除当前行刚输入接近鼠标当前位置的单词:CTR+W 以上在XS ...

  2. 【HDOJ】2459 Maximum repetition substring

    后缀数组+RMQ. /* 2459 */ #include <iostream> #include <sstream> #include <string> #inc ...

  3. oracle时间加减的语句写法

    FROM: http://soft.doit.com.cn/article/2012/0105/2850851.shtml --加法 --加1年  SELECT SYSDATE,ADD_MONTHS( ...

  4. BZOJ2870: 最长道路tree

    题解: 子树分治的做法可以戳这里:http://blog.csdn.net/iamzky/article/details/41120733 可是码量... 这里介绍另一种好写又快的方法. 我们还是一颗 ...

  5. ssh-keygen+ssh-copy-id 在linux下实现ssh无密码登录访问

    环境: 192.168.2.10 192.168.2.11 实现:2.10 ssh无需密码登录到2.11 在2.10 ssh到2.11机器上,需要密码,这样对一些脚本工作不方便,因为需要密码,也就是需 ...

  6. DB2创建序列

    一.创建序列 序列是按照一定的规则生产的数值,序列的作用非常的大,比如银行交易中的流水号,就是记录每笔交易的关键字段. 通过create sequence语句创建序列,具体语法如下: >> ...

  7. ClassLoader工作机制

    阅读目录 一.ClassLoader概念 二.JVM平台提供三层classLoader 三.JVM加载class文件到内存有两种方式 四.ClassLoader加载类的过程 五.自定义类加载器 六.实 ...

  8. Application Pool Identities

    Whether you are running your site on your own server or in the cloud, security must be at the top of ...

  9. andorid 进度条

    SeekBar类似于ProgressBar,但是ProgressBar的主要功能是让用户知道目前的状态,而SeekBar的功能在于让用户调整进度,举个例子,在音乐播放器中,可以通过调整SeekBar来 ...

  10. 【HTML】Advanced7:HTML5 Forms Pt. 2: Attributes and Data Lists

    1.<label for"" ></label> <input type="email" placeholder=" & ...