Bellman_Ford算法   求图中是否存在负权值的回路   若图中不存在   则最短路最多经过n-1个结点   若经过超过n-1个节点 则存在负权值的回路  此图永远无法找到最短路  每条边最多经过n-1次松弛~~

#include<cstdio>
#include<cstring>
#include<queue>
#include<vector>
using namespace std;
const int INF = 100000000;
const int maxn = 1005;
vector<int> G[maxn];
int weight[maxn][maxn];
queue<int> q;
bool inq[maxn];
int d[maxn],vis[maxn];
int n,m;
bool Bellman_Ford()
{
    for(int i = 0 ; i < n; i++) d[i] = INF,inq[i] = false;
    d[0] = 0;
    memset(vis, 0, sizeof(vis));
    q.push(0);
    inq[0] = true;
    while(!q.empty())
    {
        int u = q.front();
        q.pop();
        inq[u] = false;
        for(int i = 0; i < (int)G[u].size(); i++)
        {
            int v = G[u][i];
            if(d[v] > d[u] + weight[u][v])
            {
                d[v] = d[u] + weight[u][v];
                if(!inq[v])
                {
                    inq[v] = true;
                    vis[v++];
                    if(vis[u] >= n) return true;
                    q.push(v);
                }
            }
        }
    }
    return false;
}
int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d%d",&n,&m);
        for(int i = 0; i < n; i++) G[i].clear();
        for(int i = 0 ; i < m; i++)
        {
            int u,v,w;
            scanf("%d%d%d",&u,&v,&w);
            G[u].push_back(v);
            weight[u][v] = w;
        }
        if(Bellman_Ford()) puts("possible");
        else puts("not possible");
    }
    return 0;
}
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<queue>
#include<algorithm>
using namespace std; const int N = 2005;
const int INF = 0xffffff; struct Edge
{
int u,v,w;
} edge[N]; int n,m;
int d[N]; bool Bellman_Ford()
{
for(int i = 0; i < n; i++) d[i] = INF;
d[0] = 0;
bool flag;
for(int i = 0; i < n; i++)
{
flag=false;
for(int j = 0; j < m; j++)
{
if(d[edge[j].v] > d[edge[j].u]+edge[j].w)
{
d[edge[j].v] = d[edge[j].u]+edge[j].w;
flag=true;
}
}
if(!flag)
break;
}
for(int j = 0; j < m; j++)
if(d[edge[j].v] > d[edge[j].u]+edge[j].w)
return true;
return false;
} int main()
{
int t;
scanf("%d",&t);
while(t--)
{
memset(edge,0,sizeof(edge));
scanf("%d%d",&n,&m);
for(int i = 0; i < m; i++)
scanf("%d%d%d",&edge[i].u,&edge[i].v,&edge[i].w);
if(Bellman_Ford())
puts("possible");
else
puts("not possible");
}
return 0;
}

uva 558 Bellman_Ford的更多相关文章

  1. UVA 558 判定负环,spfa模板题

    1.UVA 558 Wormholes 2.总结:第一个spfa,好气的是用next[]数组判定Compilation error,改成nexte[]就过了..难道next还是特殊词吗 题意:科学家, ...

  2. uva 558 - Wormholes(Bellman Ford判断负环)

    题目链接:558 - Wormholes 题目大意:给出n和m,表示有n个点,然后给出m条边,然后判断给出的有向图中是否存在负环. 解题思路:利用Bellman Ford算法,若进行第n次松弛时,还能 ...

  3. UVA 558 Wormholes

    要问是否存在一个总权重为负数的环,用dfs即可解决. time:33ms #include <cstdio> #include <cstring> #define N 3000 ...

  4. UVA 558 Wormholes 【SPFA 判负环】

    题目链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_proble ...

  5. uva 558 tree(不忍吐槽的题目名)——yhx

    You are to determine the value of the leaf node in a given binary tree that is the terminal node of ...

  6. UVA - 558 Wormholes (SPEA算法模板题)

    先给出题面:https://vjudge.net/problem/UVA-558 题意描述:给你含n个点以及m条边的图,让你判断在这个图中是否存在负权回路. 首先,我们来介绍什么是SPEA算法 SPF ...

  7. UVA 558 SPFA 判断负环

    这个承认自己没看懂题目,一开始以为题意是形成环路之后走一圈不会产生负值就输出,原来就是判断负环,用SPFA很好用,运用队列,在判断负环的时候,用一个数组专门保存某个点的访问次数,超过了N次即可断定有负 ...

  8. UVa 11090 Going in Cycle!!【Bellman_Ford】

    题意:给出n个点m条边的加权有向图,求平均值最小的回路 自己想的是用DFS找环(真是too young),在比较找到各个环的平均权值,可是代码实现不了,觉得又不太对 后来看书= =好巧妙的办法, 使用 ...

  9. UVa 11090 Going in Cycle!! (Bellman_Ford)

    题意:给定一个加权有向图,求平均权值最小的回路. 析:先十分答案,假设答案是 ans,那么有这么一个回路,w1+w2+w3+...+wk < k*ans,这样就是答案太大,然后移项可得,(w1- ...

随机推荐

  1. C# 正则表达式(一)

    首先来复习一下正则表达式的基础知识,本篇文章分为2个部分,第一个部分复习正则表达式中的元字符和简写表达式,第二部分复习正则表达式的匹配和提取. 1.正则表达式中的元字符和简写表达式 ".&q ...

  2. 第九篇、Swift的基本使用

    1.访问权限 /* 1> internal : 内部的 1. 默认情况下所有的类&属性&方法的访问权限都是internal 2. 在本模块(项目/包/target)中可以访问 2 ...

  3. .Net平台开源作业调度框架Quartz.Net

    Quartz.NET介绍: Quartz.NET是一个开源的作业调度框架,是OpenSymphony 的 Quartz API的.NET移植,它用C#写成,可用于winform和asp.net应用中. ...

  4. css3学习笔记之边框

    CSS3 圆角 border-radius 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 <!DOCTYPE html> <h ...

  5. Javascript中的函数

    Javascript中的函数 1.什么是函数 函数是被命名的,独立的,完成特定功能的代码段.其可能给调用它的程序返回值,我们把这个代码段就称之为"函数". 被命名的:函数大部分都是 ...

  6. C++通过域名获取IP地址的方法;调试通过!

    BOOL GetIpByDomainName(][],int *nCount) { WSADATA wsaData; ]; HOSTENT *pHostEnt; ; struct sockaddr_i ...

  7. 小米2s换了屏幕后不能近距离对焦,拆过后无法对焦?

    主要问题就是小米2/2S手机中壳套后摄像头的位置,里面还有一个正方形的黑色塑胶垫片,一般拆机后这个垫片是不会掉出来的,所以一般上盖时也是直接把中壳合上后上螺丝. 这样安装基本会导致塑胶垫片把摄像头顶住 ...

  8. Xcode更改配色方案

    更改配色方案:Xcode > PReferences > Fonts & Color /********************************************** ...

  9. 操作xml文档的常用方式

    1.操作XML文档的两种常用方式: 1)使用XmlReader类和XmlWriter类操作 XmlReader是基于数据流的,占用极少的内存,是只读方式的,所以速度极快.只能采用遍历的模式查找数据节点 ...

  10. linux下挂载移动硬盘ntfs格式

    http://jingyan.baidu.com/article/f96699bba93dce894e3c1bec.html fdisk -l安装后 使用命令mount -t ntfs-3g /dev ...