hdu 4035 Maze 概率DP
题意:
有n个房间,由n-1条隧道连通起来,实际上就形成了一棵树,
从结点1出发,开始走,在每个结点i都有3种可能:
1.被杀死,回到结点1处(概率为ki)
2.找到出口,走出迷宫 (概率为ei)
3.和该点相连有m条边,随机走一条
求:走出迷宫所要走的边数的期望值。
思路:
设 E[i]表示在结点i处,要走出迷宫所要走的边数的期望。E[1]即为所求。
叶子结点:有3种情况:kill ;exit(成功出去的期望为0) ;回到父节点。
E[i] = ki*E[1] + ei*0 + (1-ki-ei)*(E[father[i]] + 1);
= ki*E[1] + (1-ki-ei)*E[father[i]] + (1-ki-ei);
非叶子结点:(m为与结点相连的边数)
E[i] = ki*E[1] + ei*0 + (1-ki-ei)/m*( E[father[i]]+1 + ∑( E[child[i]]+1 ) );
= ki*E[1] + (1-ki-ei)/m*E[father[i]] + (1-ki-ei)/m*∑(E[child[i]]) + (1-ki-ei);
设对每个结点:E[i] = Ai*E[1] + Bi*E[father[i]] + Ci;
对于非叶子结点i,设j为i的孩子结点,则
∑(E[child[i]]) = ∑E[j]
= ∑(Aj*E[1] + Bj*E[father[j]] + Cj)
= ∑(Aj*E[1] + Bj*E[i] + Cj)
带入上面的式子得
(1 - (1-ki-ei)/m*∑Bj)*E[i] = (ki+(1-ki-ei)/m*∑Aj)*E[1] + (1-ki-ei)/m*E[father[i]] + (1-ki-ei) + (1-ki-ei)/m*∑Cj;
由此可得
Ai = (ki+(1-ki-ei)/m*∑Aj) / (1 - (1-ki-ei)/m*∑Bj);
Bi = (1-ki-ei)/m / (1 - (1-ki-ei)/m*∑Bj);
Ci = ( (1-ki-ei)+(1-ki-ei)/m*∑Cj ) / (1 - (1-ki-ei)/m*∑Bj);
对于叶子结点
Ai = ki;
Bi = 1 - ki - ei;
Ci = 1 - ki - ei;
从叶子结点开始,直到算出 A1,B1,C1;
E[1] = A1*E[1] + B1*0 + C1;
所以
E[1] = C1 / (1 - A1);
若 A1趋近于1则无解...
链接:http://acm.hdu.edu.cn/showproblem.php?pid=4035
代码如下:
#include<iostream>
#include<stdio.h>
#include<algorithm>
#include<iomanip>
#include<cmath>
#include<cstring>
#include<vector>
#define ll __int64
#define pi acos(-1.0)
#define MAX 10005
using namespace std;
vector<int>p[MAX];
double A[MAX],B[MAX],C[MAX],k[MAX],e[MAX];
bool dfs(int n,int f)
{
int m=p[n].size();
double d=-k[n]-e[n];
A[n]=k[n];
B[n]=d/m;
C[n]=d;
if(m==&&f!=-) return true;
double temp=0.0;
for(int i=;i<m;i++){
int v=p[n][i];
if(v==f) continue;
if(!dfs(v,n)) return false;
A[n]+=B[n]*A[v];
C[n]+=B[n]*C[v];
temp+=B[n]*B[v];
}
temp=-temp;
if(temp<=1e-) return false;
A[n]/=temp;
B[n]/=temp;
C[n]/=temp;
return true;
}
int main(){
int t,i,n,a,b,c=;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
for(i=;i<=n;i++) p[i].clear();
for(i=;i<n;i++){
scanf("%d%d",&a,&b);
p[a].push_back(b);
p[b].push_back(a);
}
for(i=;i<=n;i++){
scanf("%lf%lf",&k[i],&e[i]);
k[i]/=100.0;
e[i]/=100.0;
}
printf("Case %d: ",++c);
if(dfs(,-)&&fabs(-A[])>1e-)
printf("%.6lf\n",C[]/(-A[]));
else printf("impossible\n");
}
return ;
}
hdu 4035 Maze 概率DP的更多相关文章
- HDU 4035 Maze 概率dp,树形dp 难度:2
http://acm.hdu.edu.cn/showproblem.php?pid=4035 求步数期望,设E[i]为在编号为i的节点时还需要走的步数,father为dfs树中该节点的父节点,son为 ...
- HDU 4035 Maze 概率DP 搜索
解题报告链接: http://www.cnblogs.com/kuangbin/archive/2012/10/03/2711108.html 先推公式,设计状态,令DP[i]表示在房间i退出要走步数 ...
- poj 2096 Collecting Bugs && ZOJ 3329 One Person Game && hdu 4035 Maze——期望DP
poj 2096 题目:http://poj.org/problem?id=2096 f[ i ][ j ] 表示收集了 i 个 n 的那个. j 个 s 的那个的期望步数. #include< ...
- HDU.4035.Maze(期望DP)
题目链接 (直接)设\(F(i)\)为在\(i\)点走出迷宫的期望步数.答案就是\(F(1)\). 令\(p_i=1-k_i-e_i\),表示\(i\)点沿着边走的概率:\(d_i=dgr[i]\), ...
- HDU - 4035 循环型概率DP
题解待会在上 #include<iostream> #include<algorithm> #include<cstdio> #include<cstring ...
- HDU 4035Maze(概率DP)
HDU 4035 Maze 体会到了状态转移,化简方程的重要性 题解转自http://blog.csdn.net/morgan_xww/article/details/6776947 /** dp ...
- HDU4035 Maze (概率DP)
转:https://www.cnblogs.com/kuangbin/archive/2012/10/03/2711108.html 题意: 有n个房间,由n-1条隧道连通起来,实际上就形成了一棵树, ...
- HDU 3853LOOPS(简单概率DP)
HDU 3853 LOOPS 题目大意是说人现在在1,1,需要走到N,N,每次有p1的可能在元位置不变,p2的可能走到右边一格,有p3的可能走到下面一格,问从起点走到终点的期望值 这是弱菜做的第 ...
- HDU - 1099 - Lottery - 概率dp
http://acm.hdu.edu.cn/showproblem.php?pid=1099 最最简单的概率dp,完全是等概率转移. 设dp[i]为已有i张票,还需要抽几次才能集齐的期望. 那么dp[ ...
随机推荐
- NodeJs获取函数名称和函数操作整理
var aa = function () { log("xxxx"); }; aa(); var model = {}; model.test = function () { lo ...
- blazeDS集成spring的remote访问
欢迎交流转载,请注明出处:http://www.cnblogs.com/shizhongtao/p/3490037.html 上一篇我只是简单实用blazeds创建了一个实例,大多数开发中,都是结合 ...
- (POJ 1797) Heavy Transportation 最大生成树
题目链接:http://poj.org/problem?id=1797 Description Background Hugo Heavy is happy. After the breakdown ...
- opencv java api提取图片sift特征
opencv在2.4.4版本以后添加了对java的最新支持,可以利用java api了.下面就是我利用opencv的java api 提取图片的sift特征. import org.opencv.co ...
- log4j配置只打印指定jar或包的DEBUG信息
有的时候查问题的时候需要打印第三方jar里面的debug信息,假如全部jar都打印的话日志文件会很大,这个时候可以配置log4j只打印指定jar的debug信息或者包,同时输出到了一个新的文件中. 比 ...
- Dao层和Service层设计
1.Dao接口层 public interface IBaseDao<T, ID extends Serializable>{ public abstract Serializable s ...
- c# 海康威视 Winform播放mp4视频
最近有个视频播放系统,需要对海康的mp4格式视频进行播放,由于普通播放器无法对该视频进行播放原因是海康对视频进行了自己的编码,需要相应的解码才可以对视频进行播放. 下面是对海康威视视频播放的c#代码( ...
- Hibernate 老外的完整教程
http://viralpatel.net/blogs/hibernate-many-to-many-annotation-mapping-tutorial/
- PHP curl 参数详解
PHP curl参数详解,分享一下. curl_setopt (PHP 4 >= 4.0.2) curl_setopt -- 为CURL调用设置一个选项 描述 bool curl_setopt ...
- CCNP第四天 OSPF综合实验(1)
ospf综合实验(1) 本实验主要考察ospf中的接口上的多种工作方式 实验如图所示: 所用拓扑为CCNP标准版,如图: --------------------------------------- ...