描述

在古老的皇宫中,有N个房间以及N-1条双向通道,每条通道连接着两个不同的房间,所有的房间都能互相到达。皇宫中有许多的宝物,所以需要若干个大内密探来守护。一个房间被守护当切仅当该房间内有一名大内密探或者与该房间直接相邻的房间内有大内密探。

现在身为大内密探零零七的你想知道要把整个皇宫守护好至少需要多少名大内密探以及有多少种安排密探的方案。两种方案不同当且仅当某个房间在一种方案有密探而在另一个方案内没有密探。

格式

输入格式

第一行一个正整数N.(1<=N<=100000)
后面N-1行,每行两个正整数a和b,表示房间a和房间b之间有一条无向通道。

房间的编号从1到N

输出格式

第一行输出正整数K,表示最少安排的大内密探。

第二行输出整数S,表示有多少种方案安排最少的密探,由于结果可能较大,请输出方案数mod 1000000007的余数。

样例1

样例输入1[复制]
7
2 1
3 1
4 2
5 1
6 2
7 6
样例输出1[复制]
3
4
 
首先这是两个子问题
第一问是比较基本的树形dp
f[i][0] i的子树中,i被覆盖但不取i的方案数
f[i][1] i被覆盖,没有其他限制的方案数
f[i][2] i点不取且i不被儿子覆盖的方案数
第二问 g[i][0~3]表示上面三个对应的方案数
第一问的转移
然后为了方便g的计算,我们一会再讨论f[i][0]的转移
那么如何来搞这个g呢。。
首先g[i][1,2]随便加法乘法原理算算就好了,但是g[i][0]比较蛋疼
首先一般我们会这样算f[i][0]
这样会在转移g的时候出现重复状态

然后我们发现可以对后面一坨维护一下前缀和和后缀和避免重复
实现细节看代码
#include<map>
#include<stack>
#include<queue>
#include<cstdio>
#include<string>
#include<vector>
#include<cstring>
#include<complex>
#include<iostream>
#include<assert.h>
#include<algorithm>
using namespace std;
using namespace std;
#define pb push_back
#define inf 1001001001
#define infll 1001001001001001001LL
#define FOR0(i,n) for(int (i)=0;(i)<(n);++(i))
#define FOR1(i,n) for(int (i)=1;(i)<=(n);++(i))
#define mp make_pair
#define pii pair<int,int>
#define ll long long
#define ld double
#define vi vector<int>
#define SZ(x) ((int)((x).size()))
#define fi first
#define se second
#define RI(n) int (n); scanf("%d",&(n));
#define RI2(n,m) int (n),(m); scanf("%d %d",&(n),&(m));
#define RI3(n,m,k) int (n),(m),(k); scanf("%d %d %d",&(n),&(m),&(k));
template<typename T,typename TT> ostream& operator<<(ostream &s,pair<T,TT> t) {return s<<"("<<t.first<<","<<t.second<<")";}
template<typename T> ostream& operator<<(ostream &s,vector<T> t){FOR0(i,sz(t))s<<t[i]<<" ";return s; }
#define dbg(vari) cerr<<#vari<<" = "<<(vari)<<endl
#define all(t) t.begin(),t.end()
#define FEACH(i,t) for (typeof(t.begin()) i=t.begin(); i!=t.end(); i++)
#define TESTS RI(testow)while(testow--)
#define FORZ(i,a,b) for(int (i)=(a);(i)<=(b);++i)
#define FORD(i,a,b) for(int (i)=(a); (i)>=(b);--i)
#define gmax(a,b) (a)=max((a),(b))
#define gmin(a,b) (a)=min((a),(b))
#define ios0 ios_base::sync_with_stdio(0)
#define Ri register int
#define gc getchar()
#define il inline
il int read(){
bool f=true;
Ri x=0;char ch;
while(!isdigit(ch=gc))
if(ch=='-')f=false;
while(isdigit(ch)){
x=(x<<1)+(x<<3)+ch-'0';
ch=gc;
}
return f?x:-x;
}
#define gi read()
#define FO(x) freopen(#x".in","r",stdin),freopen(#x".out","w",stdout);
#define childs(x,i) for(int i=last[x]; i; i=e[i].next)
const int N=100005,mod=1000000007;
int last[N],cnt,n,l,f[N][3],r[N],st[N];
ll d[N][3],suml,sumr[N];
struct edge{
int to,next;
}e[230000];
ll mul(ll a,ll b){
return ((a%mod)*(b%mod))%mod;
}
ll Plus(ll a,ll b){
return (a%mod+b%mod)%mod;
}
void insert(int u, int v) {
e[++cnt].next=last[u];last[u]=cnt;e[cnt].to=v;
e[++cnt].next=last[v];last[v]=cnt;e[cnt].to=u;
} void dfs(int x,int fa) {
int t1=1,t2=0,s1=1,s2=1,ch;
childs(x,i)
if((ch=e[i].to)!=fa) {
ll T=0;
dfs(ch,x);
int mn=min(min(f[ch][0],f[ch][1]),f[ch][2]);
FOR0(j,3)
if(f[ch][j]==mn) T+=d[ch][j];
s1=mul(s1,T);
T=0;
s2=mul(s2,d[ch][0]);
t1+=mn;
t2+=f[ch][0];
}
f[x][1]=t1;
f[x][2]=t2;
d[x][1]=s1;
d[x][2]=s2;
int sz=0;
childs(x,i) if(e[i].to!=fa) st[++sz]=e[i].to;
r[sz+1]=0;
sumr[sz+1]=1;suml=1;l=0;
FORD(i,sz,1) {
ch=st[i];
ll T=0;
int mn=min(f[ch][0],f[ch][1]);
FOR0(j,2)if(f[ch][j]==mn) T+=d[ch][j];
r[i]=r[i+1]+mn;
sumr[i]=mul(sumr[i+1],T);
}
f[x][0]=N;
FOR1(i,sz){
int fyb=l+f[st[i]][1]+r[i+1];
if(fyb<f[x][0]) f[x][0]=fyb,d[x][0]=mul(d[st[i]][1],mul(suml,sumr[i+1]));
else if(fyb==f[x][0]) d[x][0]=Plus(d[x][0],mul(d[st[i]][1],mul(suml,sumr[i+1])));
if(f[st[i]][0]==N) break;
l+=f[st[i]][0];
suml=mul(suml,d[st[i]][0]);
}
}
int main() {
RI(n);
FOR1(i,n-1)
insert(gi,gi);
int root=1;
dfs(root,-1);
int ans1=min(f[root][1],f[root][0]),ans2=0;
if(ans1==f[root][0])
ans2=Plus(ans2,d[root][0]);
if(ans1==f[root][1])
ans2=Plus(ans2,d[root][1]);
printf("%d\n%d\n",ans1,ans2);
return 0;
}

[vijos 1770]大内密探的更多相关文章

  1. 【vijos】1770 大内密探(树形dp+计数)

    https://vijos.org/p/1770 不重不漏地设计状态才能正确的计数QAQ 虽然可能最优化是正确的,但是不能保证状态不相交就是作死.... 之前设的状态错了... 应该设 f[i][0] ...

  2. Vijos p1770 大内密探 树形DP+计数

    4天终于做出来了,没错我就是这么蒟蒻.教训还是很多的. 建议大家以后编树形DP不要用记忆化搜索,回溯转移状态个人感觉更有条理性. 大神题解传送门 by iwtwiioi 我的题解大家可以看注释&quo ...

  3. 【BZOJ 1061】【Vijos 1825】【NOI 2008】志愿者招募

    http://www.lydsy.com/JudgeOnline/problem.php?id=1061 https://vijos.org/p/1825 直接上姜爷论文... #include< ...

  4. vijos P1915 解方程 加强版

    背景 B酱为NOIP 2014出了一道有趣的题目, 可是在NOIP现场, B酱发现数据规模给错了, 他很伤心, 哭得很可怜..... 为了安慰可怜的B酱, vijos刻意挂出来了真实的题目! 描述 已 ...

  5. vijos P1780 【NOIP2012】 开车旅行

    描述 小\(A\)和小\(B\)决定利用假期外出旅行,他们将想去的城市从\(1\)到\(N\)编号,且编号较小的城市在编号较大的城市的西边,已知各个城市的海拔高度互不相同,记城市\(i\)的海拔高度为 ...

  6. 【BZOJ 2541】【Vijos 1366】【CTSC 2000】冰原探险

    http://www.lydsy.com/JudgeOnline/problem.php?id=2541 https://vijos.org/p/1366 loli秘制大爆搜_(:з」∠)_坑了好久啊 ...

  7. 【BZOJ 1065】【Vijos 1826】【NOI 2008】奥运物流

    http://www.lydsy.com/JudgeOnline/problem.php?id=1065 https://vijos.org/p/1826 好难的题啊TWT ∈我这辈子也想不出来系列~ ...

  8. BZOJ 1770: [Usaco2009 Nov]lights 燈

    Description 一个图,对一个点进行操作会改变这个点及其相邻的点的状态,问全部变成黑色至少需要几次.数据保证有解. Sol Meet in middle. 我一开始写个高斯消元,发现有两个点过 ...

  9. [题解]vijos & codevs 能量项链

    a { text-decoration: none; font-family: "comic sans ms" } .math { color: gray; font-family ...

随机推荐

  1. AMQ学习笔记 - 18. 持久化的测试

    概述 对持久化的有效性进行测试. 测试实例 测试实例 结果预测 持久化递送 重启ActiveMQ后,消息还在队列中 非持久化递送 重启ActiveMQ后,消息不在队列中 demo设计 jms-prod ...

  2. 11个优秀的HTML5 & CSS3下拉菜单制作教程

    下拉菜单是一个很常见的效果,在网站设计中被广泛使用.通过使用下拉菜单,设计者不仅可以在网站设计中营造出色的视觉吸引力,但也可以为网站提供了一个有效的导航方案.使用HTML5和CSS3可以更容易创造视觉 ...

  3. Linux相关指令

    Linux相关指令 1.find文件搜索功能 find [目录列表] [匹配参数] [匹配标准] -name :按文件名称进行搜索 -group :按文件所属组进行搜索 -user :按文件拥有者进行 ...

  4. 会场安排问题—NYOJ14

    时间限制:3000 ms  |  内存限制:65535 KB 难度:4   描述 学校的小礼堂每天都会有许多活动,有时间这些活动的计划时间会发生冲突,需要选择出一些活动进行举办.小刘的工作就是安排学校 ...

  5. java.util.TreeMap源码分析

    TreeMap的实现基于红黑树,排列的顺序根据key的大小,或者在创建时提供的比较器,取决于使用哪个构造器. 对于,containsKey,get,put,remove操作,保证时间复杂度为log(n ...

  6. JavaScript 中undefined,null,NaN的区别

    1.类型分析: js中的数据类型有undefined,boolean,number,string,object等5种,前4种为原始类型,第5种为引用类型.var a1;var a2 = true;va ...

  7. ◆linux分区的加密与自动解密◆——Super孟再创辉煌

    首先制作分区的加密挂载: 分区的自动解密:

  8. arm汇编指令总结(不断更新)

    /** ****************************************************************************** * @author    Maox ...

  9. php生成txt文件换行问题

    用双引号即"\r\n"换行,不能用单引号即'\r\n'.

  10. Sublime Text博客插件 --- iblog

    iblog是一款 sublime 博客插件,目前只支持cnblog. 项目地址:https://github.com/iskeeter/iblog 功能介绍 新建和更新cnblog的博客 支持mark ...