[vijos 1770]大内密探
描述
在古老的皇宫中,有N个房间以及N-1条双向通道,每条通道连接着两个不同的房间,所有的房间都能互相到达。皇宫中有许多的宝物,所以需要若干个大内密探来守护。一个房间被守护当切仅当该房间内有一名大内密探或者与该房间直接相邻的房间内有大内密探。
现在身为大内密探零零七的你想知道要把整个皇宫守护好至少需要多少名大内密探以及有多少种安排密探的方案。两种方案不同当且仅当某个房间在一种方案有密探而在另一个方案内没有密探。
格式
输入格式
第一行一个正整数N.(1<=N<=100000)
后面N-1行,每行两个正整数a和b,表示房间a和房间b之间有一条无向通道。
房间的编号从1到N
输出格式
第一行输出正整数K,表示最少安排的大内密探。
第二行输出整数S,表示有多少种方案安排最少的密探,由于结果可能较大,请输出方案数mod 1000000007的余数。
样例1
样例输入1[复制]
7
2 1
3 1
4 2
5 1
6 2
7 6
样例输出1[复制]
3
4
首先这是两个子问题
第一问是比较基本的树形dp
设
f[i][0] i的子树中,i被覆盖但不取i的方案数
f[i][1] i被覆盖,没有其他限制的方案数
f[i][2] i点不取且i不被儿子覆盖的方案数
第二问 g[i][0~3]表示上面三个对应的方案数
第一问的转移
然后为了方便g的计算,我们一会再讨论f[i][0]的转移
那么如何来搞这个g呢。。
首先g[i][1,2]随便加法乘法原理算算就好了,但是g[i][0]比较蛋疼
首先一般我们会这样算f[i][0]
这样会在转移g的时候出现重复状态
然后我们发现可以对后面一坨维护一下前缀和和后缀和避免重复
实现细节看代码
#include<map>
#include<stack>
#include<queue>
#include<cstdio>
#include<string>
#include<vector>
#include<cstring>
#include<complex>
#include<iostream>
#include<assert.h>
#include<algorithm>
using namespace std;
using namespace std;
#define pb push_back
#define inf 1001001001
#define infll 1001001001001001001LL
#define FOR0(i,n) for(int (i)=0;(i)<(n);++(i))
#define FOR1(i,n) for(int (i)=1;(i)<=(n);++(i))
#define mp make_pair
#define pii pair<int,int>
#define ll long long
#define ld double
#define vi vector<int>
#define SZ(x) ((int)((x).size()))
#define fi first
#define se second
#define RI(n) int (n); scanf("%d",&(n));
#define RI2(n,m) int (n),(m); scanf("%d %d",&(n),&(m));
#define RI3(n,m,k) int (n),(m),(k); scanf("%d %d %d",&(n),&(m),&(k));
template<typename T,typename TT> ostream& operator<<(ostream &s,pair<T,TT> t) {return s<<"("<<t.first<<","<<t.second<<")";}
template<typename T> ostream& operator<<(ostream &s,vector<T> t){FOR0(i,sz(t))s<<t[i]<<" ";return s; }
#define dbg(vari) cerr<<#vari<<" = "<<(vari)<<endl
#define all(t) t.begin(),t.end()
#define FEACH(i,t) for (typeof(t.begin()) i=t.begin(); i!=t.end(); i++)
#define TESTS RI(testow)while(testow--)
#define FORZ(i,a,b) for(int (i)=(a);(i)<=(b);++i)
#define FORD(i,a,b) for(int (i)=(a); (i)>=(b);--i)
#define gmax(a,b) (a)=max((a),(b))
#define gmin(a,b) (a)=min((a),(b))
#define ios0 ios_base::sync_with_stdio(0)
#define Ri register int
#define gc getchar()
#define il inline
il int read(){
bool f=true;
Ri x=0;char ch;
while(!isdigit(ch=gc))
if(ch=='-')f=false;
while(isdigit(ch)){
x=(x<<1)+(x<<3)+ch-'0';
ch=gc;
}
return f?x:-x;
}
#define gi read()
#define FO(x) freopen(#x".in","r",stdin),freopen(#x".out","w",stdout);
#define childs(x,i) for(int i=last[x]; i; i=e[i].next)
const int N=100005,mod=1000000007;
int last[N],cnt,n,l,f[N][3],r[N],st[N];
ll d[N][3],suml,sumr[N];
struct edge{
int to,next;
}e[230000];
ll mul(ll a,ll b){
return ((a%mod)*(b%mod))%mod;
}
ll Plus(ll a,ll b){
return (a%mod+b%mod)%mod;
}
void insert(int u, int v) {
e[++cnt].next=last[u];last[u]=cnt;e[cnt].to=v;
e[++cnt].next=last[v];last[v]=cnt;e[cnt].to=u;
} void dfs(int x,int fa) {
int t1=1,t2=0,s1=1,s2=1,ch;
childs(x,i)
if((ch=e[i].to)!=fa) {
ll T=0;
dfs(ch,x);
int mn=min(min(f[ch][0],f[ch][1]),f[ch][2]);
FOR0(j,3)
if(f[ch][j]==mn) T+=d[ch][j];
s1=mul(s1,T);
T=0;
s2=mul(s2,d[ch][0]);
t1+=mn;
t2+=f[ch][0];
}
f[x][1]=t1;
f[x][2]=t2;
d[x][1]=s1;
d[x][2]=s2;
int sz=0;
childs(x,i) if(e[i].to!=fa) st[++sz]=e[i].to;
r[sz+1]=0;
sumr[sz+1]=1;suml=1;l=0;
FORD(i,sz,1) {
ch=st[i];
ll T=0;
int mn=min(f[ch][0],f[ch][1]);
FOR0(j,2)if(f[ch][j]==mn) T+=d[ch][j];
r[i]=r[i+1]+mn;
sumr[i]=mul(sumr[i+1],T);
}
f[x][0]=N;
FOR1(i,sz){
int fyb=l+f[st[i]][1]+r[i+1];
if(fyb<f[x][0]) f[x][0]=fyb,d[x][0]=mul(d[st[i]][1],mul(suml,sumr[i+1]));
else if(fyb==f[x][0]) d[x][0]=Plus(d[x][0],mul(d[st[i]][1],mul(suml,sumr[i+1])));
if(f[st[i]][0]==N) break;
l+=f[st[i]][0];
suml=mul(suml,d[st[i]][0]);
}
}
int main() {
RI(n);
FOR1(i,n-1)
insert(gi,gi);
int root=1;
dfs(root,-1);
int ans1=min(f[root][1],f[root][0]),ans2=0;
if(ans1==f[root][0])
ans2=Plus(ans2,d[root][0]);
if(ans1==f[root][1])
ans2=Plus(ans2,d[root][1]);
printf("%d\n%d\n",ans1,ans2);
return 0;
}
[vijos 1770]大内密探的更多相关文章
- 【vijos】1770 大内密探(树形dp+计数)
https://vijos.org/p/1770 不重不漏地设计状态才能正确的计数QAQ 虽然可能最优化是正确的,但是不能保证状态不相交就是作死.... 之前设的状态错了... 应该设 f[i][0] ...
- Vijos p1770 大内密探 树形DP+计数
4天终于做出来了,没错我就是这么蒟蒻.教训还是很多的. 建议大家以后编树形DP不要用记忆化搜索,回溯转移状态个人感觉更有条理性. 大神题解传送门 by iwtwiioi 我的题解大家可以看注释&quo ...
- 【BZOJ 1061】【Vijos 1825】【NOI 2008】志愿者招募
http://www.lydsy.com/JudgeOnline/problem.php?id=1061 https://vijos.org/p/1825 直接上姜爷论文... #include< ...
- vijos P1915 解方程 加强版
背景 B酱为NOIP 2014出了一道有趣的题目, 可是在NOIP现场, B酱发现数据规模给错了, 他很伤心, 哭得很可怜..... 为了安慰可怜的B酱, vijos刻意挂出来了真实的题目! 描述 已 ...
- vijos P1780 【NOIP2012】 开车旅行
描述 小\(A\)和小\(B\)决定利用假期外出旅行,他们将想去的城市从\(1\)到\(N\)编号,且编号较小的城市在编号较大的城市的西边,已知各个城市的海拔高度互不相同,记城市\(i\)的海拔高度为 ...
- 【BZOJ 2541】【Vijos 1366】【CTSC 2000】冰原探险
http://www.lydsy.com/JudgeOnline/problem.php?id=2541 https://vijos.org/p/1366 loli秘制大爆搜_(:з」∠)_坑了好久啊 ...
- 【BZOJ 1065】【Vijos 1826】【NOI 2008】奥运物流
http://www.lydsy.com/JudgeOnline/problem.php?id=1065 https://vijos.org/p/1826 好难的题啊TWT ∈我这辈子也想不出来系列~ ...
- BZOJ 1770: [Usaco2009 Nov]lights 燈
Description 一个图,对一个点进行操作会改变这个点及其相邻的点的状态,问全部变成黑色至少需要几次.数据保证有解. Sol Meet in middle. 我一开始写个高斯消元,发现有两个点过 ...
- [题解]vijos & codevs 能量项链
a { text-decoration: none; font-family: "comic sans ms" } .math { color: gray; font-family ...
随机推荐
- @Register指令
@Register指令用来创建标记前缀和自定义控件之间的关联,这为开发人员提供了一种在ASP.NET应用程序文件(包括网页.用户控件和母板页)中引用自定义控件的简单方法. <%@Register ...
- AJAX_1
AJAX 简介:异步JavaScript 及XML(英文:Asynchronous JavaScript And XML 缩写Ajax).是一种基于 JavaScript和HTTP请求(HTTP re ...
- tcp 和 udp 缓冲区的默认大小及设置【转】
1. tcp 收发缓冲区默认值 [root@ www.linuxidc.com]# cat /proc/sys/net/ipv4/tcp_rmem 4096 87380 4161536 ...
- 微信公众号与HTML 5混合模式揭秘2——分享手机相册中照片
本书是分享微信jssdk开发的第二篇. 4.2.1 项目需求 需求说明:实现微信端的手机用户,点击按钮选取1张图片,分享到朋友圈. 4.2.2 需求分解 通过对需求的了解,可以将其分解为: ( ...
- HashSet和LinkedHashSet特点.
1)::HashSet-------(内部为HashCode表数据结构)---(保证数据唯一,但不保证数据有序) 不对数据进行排序,只是通过hashCode和equal对数据进行相同判定,如果相同就不 ...
- LVS-HA
heartbeat 监听在udp的694的端口 LRM:本地资源管理器 CRM:资源管理器 RA:资源代理(脚本) heartbeat legacy : heartbeat 传统类型的资源代理,通 ...
- 层叠水平(stacking level)
运用上图的逻辑,上面的题目就迎刃而解,inline-blcok 的 stacking level 比之 float 要高,所以无论 DOM 的先后顺序都堆叠在上面. 不过上面图示的说法有一些不准确,按 ...
- RUP(Rational Unified Process)统一软件过程概述
RUP是Rational公司三位杰出的软件工程大师Grady Booch,Ivar Jacobson,James Rumbaugh提出的一个软件工程过程方法.软件开发过程是将一个用户需求转化为软件系统 ...
- Mysql支持中文全文检索的插件mysqlcft-应用中的问题
MySQL目前版本的全文检索没有对中文很好的支持,但可以通过安装mysqlcft插件来实现,具体的安装使用方法:http://blog.s135.com/post/356/ mysqlcft的官方网站 ...
- Google Chrome七大新特性
Google Chrome 在日常生活中扮演的角色不只是一个功能强大的网络浏览器,它内置的 DevTools 同样也是网络开发者进行网络开发的重要工具. DevTools 在不断的进行版本更新,其中有 ...