题目链接:

题目

E. Another Sith Tournament

time limit per test2.5 seconds

memory limit per test256 megabytes

inputstandard input

outputstandard output

问题描述

The rules of Sith Tournament are well known to everyone. n Sith take part in the Tournament. The Tournament starts with the random choice of two Sith who will fight in the first battle. As one of them loses, his place is taken by the next randomly chosen Sith who didn't fight before. Does it need to be said that each battle in the Sith Tournament ends with a death of one of opponents? The Tournament ends when the only Sith remains alive.

Jedi Ivan accidentally appeared in the list of the participants in the Sith Tournament. However, his skills in the Light Side of the Force are so strong so he can influence the choice of participants either who start the Tournament or who take the loser's place after each battle. Of course, he won't miss his chance to take advantage of it. Help him to calculate the probability of his victory.

输入

The first line contains a single integer n (1 ≤ n ≤ 18) — the number of participants of the Sith Tournament.

Each of the next n lines contains n real numbers, which form a matrix pij (0 ≤ pij ≤ 1). Each its element pij is the probability that the i-th participant defeats the j-th in a duel.

The elements on the main diagonal pii are equal to zero. For all different i, j the equality pij + pji = 1 holds. All probabilities are given with no more than six decimal places.

Jedi Ivan is the number 1 in the list of the participants.

输出

Output a real number — the probability that Jedi Ivan will stay alive after the Tournament. Absolute or relative error of the answer must not exceed 10 - 6.

样例

input

3

0.0 0.5 0.8

0.5 0.0 0.4

0.2 0.6 0.0

output

0.680000000000000

题意

n个人,每次两个人决斗,输的退场,赢的继续和下一个人打,你可以决定开始决斗的两人和每局上场和赢的人打的那个人。现在你是第0号,问你赢得比赛的最大概率是多少。也就是说在某一固定的上场顺序下,能赢的概率最大,求这个最大概率。

题解

dp[i][j]表示现在还活着的人是状态i(为1的代表活着),在台上的人是j,0号能赢的最大概率。dp[1][0]=1。

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; const int maxn = 18; double dp[1 << maxn][maxn];
double p[maxn][maxn];
int n; int main() {
scanf("%d", &n);
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
scanf("%lf", &p[i][j]);
}
}
memset(dp, 0, sizeof(dp));
dp[1][0] = 1;
for (int i = 0; i < (1 << n); i++) {
for (int j = 0; j < n; j++) if(i&(1<<j)){
for (int k = 0; k < n; k++)if (i&(1 << k) && k != j) {
dp[i][j] = max(dp[i][j], p[j][k] * dp[i ^ (1 << k)][j] + p[k][j] * dp[i ^ (1 << j)][k]);
}
}
}
double ans = 0;
for (int i = 0; i < n; i++) {
ans = max(ans, dp[(1 << n) - 1][i]);
}
printf("%.15lf\n", ans);
return 0;
}

Educational Codeforces Round 13 E. Another Sith Tournament 概率dp+状压的更多相关文章

  1. Educational Codeforces Round 13 E. Another Sith Tournament 状压dp

    E. Another Sith Tournament 题目连接: http://www.codeforces.com/contest/678/problem/E Description The rul ...

  2. Educational Codeforces Round 74 (Rated for Div. 2)E(状压DP,降低一个m复杂度做法含有集合思维)

    #define HAVE_STRUCT_TIMESPEC#include<bits/stdc++.h>using namespace std;char s[100005];int pos[ ...

  3. [Educational Codeforces Round 63 ] D. Beautiful Array (思维+DP)

    Educational Codeforces Round 63 (Rated for Div. 2) D. Beautiful Array time limit per test 2 seconds ...

  4. Educational Codeforces Round 13

    http://codeforces.com/contest/678 A:水题 #include<bits/stdc++.h> #define fi first #define se sec ...

  5. Codeforces Round #235 (Div. 2) D. Roman and Numbers 状压dp+数位dp

    题目链接: http://codeforces.com/problemset/problem/401/D D. Roman and Numbers time limit per test4 secon ...

  6. Codeforces Round #531 (Div. 3) F. Elongated Matrix(状压DP)

    F. Elongated Matrix 题目链接:https://codeforces.com/contest/1102/problem/F 题意: 给出一个n*m的矩阵,现在可以随意交换任意的两行, ...

  7. Educational Codeforces Round 13 D:Iterated Linear Function(数论)

    http://codeforces.com/contest/678/problem/D D. Iterated Linear Function Consider a linear function f ...

  8. Educational Codeforces Round 13 D. Iterated Linear Function (矩阵快速幂)

    题目链接:http://codeforces.com/problemset/problem/678/D 简单的矩阵快速幂模版题 矩阵是这样的: #include <bits/stdc++.h&g ...

  9. Educational Codeforces Round 13 D. Iterated Linear Function 水题

    D. Iterated Linear Function 题目连接: http://www.codeforces.com/contest/678/problem/D Description Consid ...

随机推荐

  1. Part 94 Difference between Monitor and lock in C#

  2. ocx在我indows7无法注册

    公司今天用到一个  要用到ocx ,我调试好久都无法安装..... 后来在网上看到.原来是没有安装 VC Redist Installer(VC20052008201020122013)运行库合集 导 ...

  3. 《Cocos2d-x实战 工具卷》上线了

    感谢大家一直以来的支持! 各大商店均开始销售:京东:http://item.jd.com/11659696.html当当:http://product.dangdang.com/23659809.ht ...

  4. UINavigationController基本使用

    写了很长的NavigationController介绍,结果被cnblog吞了,没存档,算了,简单粗暴,直接上如何使用. 1.创建3个Controller,继承自UIViewController 在A ...

  5. 8个3D视觉效果的HTML5动画欣赏

    现在的网页中应用了越来越多的3D应用,特别是基于HTML5 Canvas的动画特效,让用户有一种非常震撼的视觉体验.本文收集了8个非常炫酷的3D视觉效果的HTML5动画,都有源代码分享,你可以学习你感 ...

  6. startup.bat闪退---tomcat环境变量配置中遇到的问题

    常用的方法: 1.在已解压的tomcat的bin文件夹下找到startup.bat,右击->编辑.在文件头加入下面两行: SET JAVA_HOME=D:\Java\jdk1.6.0_10   ...

  7. 一个适用于层级目录结构的makefile模版

    今天写了个层次化的Makefile模版,用来自动化编译项目,这个模版应当包含以下功能: 适用于层次化结构,Makefile主要内容都放在顶层目录下的Makefile.env中,子层Makefile包含 ...

  8. insertorupdate

    MERGE INTO  运用的心得 最近完成一个功能,就是往表里插入数据,以party_id 和prod_id为联合主键,存在的更新,不存在的插入, ORACLE 10g 后可以试用MERGE INT ...

  9. 《自动共享LDAP用户并且访问其家目录》RHEL6

    实验的目的: 实现ldap服务器上的ldap用户被客户端访问,自动挂载到客户端,并且可以访问ldap用户的家目录. 服务端: 1.只需要配置文件: Iptables –F       关闭selinu ...

  10. V2EX社区

    无论你是在大学进行人生最重要阶段的学习,或者是在中国的某座城市工作,或者是在外太空的某个天体如 Sputnik 1 上享受人生,在注册进入 V2EX 之后,你都可以为自己设置一个所在地,从而找到更多和 ...