题目链接:

题目

E. Another Sith Tournament

time limit per test2.5 seconds

memory limit per test256 megabytes

inputstandard input

outputstandard output

问题描述

The rules of Sith Tournament are well known to everyone. n Sith take part in the Tournament. The Tournament starts with the random choice of two Sith who will fight in the first battle. As one of them loses, his place is taken by the next randomly chosen Sith who didn't fight before. Does it need to be said that each battle in the Sith Tournament ends with a death of one of opponents? The Tournament ends when the only Sith remains alive.

Jedi Ivan accidentally appeared in the list of the participants in the Sith Tournament. However, his skills in the Light Side of the Force are so strong so he can influence the choice of participants either who start the Tournament or who take the loser's place after each battle. Of course, he won't miss his chance to take advantage of it. Help him to calculate the probability of his victory.

输入

The first line contains a single integer n (1 ≤ n ≤ 18) — the number of participants of the Sith Tournament.

Each of the next n lines contains n real numbers, which form a matrix pij (0 ≤ pij ≤ 1). Each its element pij is the probability that the i-th participant defeats the j-th in a duel.

The elements on the main diagonal pii are equal to zero. For all different i, j the equality pij + pji = 1 holds. All probabilities are given with no more than six decimal places.

Jedi Ivan is the number 1 in the list of the participants.

输出

Output a real number — the probability that Jedi Ivan will stay alive after the Tournament. Absolute or relative error of the answer must not exceed 10 - 6.

样例

input

3

0.0 0.5 0.8

0.5 0.0 0.4

0.2 0.6 0.0

output

0.680000000000000

题意

n个人,每次两个人决斗,输的退场,赢的继续和下一个人打,你可以决定开始决斗的两人和每局上场和赢的人打的那个人。现在你是第0号,问你赢得比赛的最大概率是多少。也就是说在某一固定的上场顺序下,能赢的概率最大,求这个最大概率。

题解

dp[i][j]表示现在还活着的人是状态i(为1的代表活着),在台上的人是j,0号能赢的最大概率。dp[1][0]=1。

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; const int maxn = 18; double dp[1 << maxn][maxn];
double p[maxn][maxn];
int n; int main() {
scanf("%d", &n);
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
scanf("%lf", &p[i][j]);
}
}
memset(dp, 0, sizeof(dp));
dp[1][0] = 1;
for (int i = 0; i < (1 << n); i++) {
for (int j = 0; j < n; j++) if(i&(1<<j)){
for (int k = 0; k < n; k++)if (i&(1 << k) && k != j) {
dp[i][j] = max(dp[i][j], p[j][k] * dp[i ^ (1 << k)][j] + p[k][j] * dp[i ^ (1 << j)][k]);
}
}
}
double ans = 0;
for (int i = 0; i < n; i++) {
ans = max(ans, dp[(1 << n) - 1][i]);
}
printf("%.15lf\n", ans);
return 0;
}

Educational Codeforces Round 13 E. Another Sith Tournament 概率dp+状压的更多相关文章

  1. Educational Codeforces Round 13 E. Another Sith Tournament 状压dp

    E. Another Sith Tournament 题目连接: http://www.codeforces.com/contest/678/problem/E Description The rul ...

  2. Educational Codeforces Round 74 (Rated for Div. 2)E(状压DP,降低一个m复杂度做法含有集合思维)

    #define HAVE_STRUCT_TIMESPEC#include<bits/stdc++.h>using namespace std;char s[100005];int pos[ ...

  3. [Educational Codeforces Round 63 ] D. Beautiful Array (思维+DP)

    Educational Codeforces Round 63 (Rated for Div. 2) D. Beautiful Array time limit per test 2 seconds ...

  4. Educational Codeforces Round 13

    http://codeforces.com/contest/678 A:水题 #include<bits/stdc++.h> #define fi first #define se sec ...

  5. Codeforces Round #235 (Div. 2) D. Roman and Numbers 状压dp+数位dp

    题目链接: http://codeforces.com/problemset/problem/401/D D. Roman and Numbers time limit per test4 secon ...

  6. Codeforces Round #531 (Div. 3) F. Elongated Matrix(状压DP)

    F. Elongated Matrix 题目链接:https://codeforces.com/contest/1102/problem/F 题意: 给出一个n*m的矩阵,现在可以随意交换任意的两行, ...

  7. Educational Codeforces Round 13 D:Iterated Linear Function(数论)

    http://codeforces.com/contest/678/problem/D D. Iterated Linear Function Consider a linear function f ...

  8. Educational Codeforces Round 13 D. Iterated Linear Function (矩阵快速幂)

    题目链接:http://codeforces.com/problemset/problem/678/D 简单的矩阵快速幂模版题 矩阵是这样的: #include <bits/stdc++.h&g ...

  9. Educational Codeforces Round 13 D. Iterated Linear Function 水题

    D. Iterated Linear Function 题目连接: http://www.codeforces.com/contest/678/problem/D Description Consid ...

随机推荐

  1. jQuery - 中文輸入法與KeyDown/KeyPress事件

    最近專案中引用了Telerik ASP.NET擴充元件AutoComplete輸入欄位,測試時發現偶爾會不聽始喚,輸入文字時無法觸發資料查詢,在Javascript Source Code裡反覆追蹤測 ...

  2. 滚动视图和页面控制UIScollView,UIpageControlDemo

    ////  ViewController.m//  UIScollView////  Created by hehe on 15/9/25.//  Copyright (c) 2015年 wang.h ...

  3. linux 内核和应用程序区别

    应用程序存在于虚拟内存中, 有一个非常大的堆栈区. 堆栈, 当然, 是用来保存函数调用历史以及所有的由当前活跃的函数创建的自动变量. 内核, 相反, 有一个非常小的堆栈; 它可能小到一个, 4096 ...

  4. (转)RabbitMQ消息队列(三):任务分发机制

    在上篇文章中,我们解决了从发送端(Producer)向接收端(Consumer)发送“Hello World”的问题.在实际的应用场景中,这是远远不够的.从本篇文章开始,我们将结合更加实际的应用场景来 ...

  5. SpringMvc入门五----文件上传

      知识点: SpringMvc单文件上传 SpringMvc多文件上传   这里我直接演示多文件上传,单文件的上传就不说了,不过代码都是现成的. 效果预览:   DEMO图:     添加文件上传j ...

  6. 浅析 GRUB 如何加载 linux kernel

    前言 对于 GRUB 的加载流程,网上绝大部分都是写对 menu.lst, grub.cfg 这些 GRUB 配置文件的编写流程,就像是写脚本语言一样,用些关键字就能让 PC机能正确启动桌面 Linu ...

  7. linux命令行解析函数介绍

    函数原型:         int getopt(int argc,char * const argv[ ],const char * optstring);         给定了命令参数的数量 ( ...

  8. header页头内容整理

    meta标签 <meta charset="UTF-8"/> <!--视窗宽度--> <meta name="viewport" ...

  9. 查询sql语句所花时间

    --1:下面这种是SQL Server中比较简单的查询SQL语句执行时间方法,通过查询前的时间和查询后的时间差来计算的: declare @begin_date datetime declare @e ...

  10. Yii2框架数据库增删改查小结

    User::find()->all();    //返回所有用户数据:User::findOne($id);   //返回 主键 id=1  的一条数据: User::find()->wh ...