Educational Codeforces Round 13 E. Another Sith Tournament 概率dp+状压
题目链接:
题目
E. Another Sith Tournament
time limit per test2.5 seconds
memory limit per test256 megabytes
inputstandard input
outputstandard output
问题描述
The rules of Sith Tournament are well known to everyone. n Sith take part in the Tournament. The Tournament starts with the random choice of two Sith who will fight in the first battle. As one of them loses, his place is taken by the next randomly chosen Sith who didn't fight before. Does it need to be said that each battle in the Sith Tournament ends with a death of one of opponents? The Tournament ends when the only Sith remains alive.
Jedi Ivan accidentally appeared in the list of the participants in the Sith Tournament. However, his skills in the Light Side of the Force are so strong so he can influence the choice of participants either who start the Tournament or who take the loser's place after each battle. Of course, he won't miss his chance to take advantage of it. Help him to calculate the probability of his victory.
输入
The first line contains a single integer n (1 ≤ n ≤ 18) — the number of participants of the Sith Tournament.
Each of the next n lines contains n real numbers, which form a matrix pij (0 ≤ pij ≤ 1). Each its element pij is the probability that the i-th participant defeats the j-th in a duel.
The elements on the main diagonal pii are equal to zero. For all different i, j the equality pij + pji = 1 holds. All probabilities are given with no more than six decimal places.
Jedi Ivan is the number 1 in the list of the participants.
输出
Output a real number — the probability that Jedi Ivan will stay alive after the Tournament. Absolute or relative error of the answer must not exceed 10 - 6.
样例
input
3
0.0 0.5 0.8
0.5 0.0 0.4
0.2 0.6 0.0
output
0.680000000000000
题意
n个人,每次两个人决斗,输的退场,赢的继续和下一个人打,你可以决定开始决斗的两人和每局上场和赢的人打的那个人。现在你是第0号,问你赢得比赛的最大概率是多少。也就是说在某一固定的上场顺序下,能赢的概率最大,求这个最大概率。
题解
dp[i][j]表示现在还活着的人是状态i(为1的代表活着),在台上的人是j,0号能赢的最大概率。dp[1][0]=1。
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn = 18;
double dp[1 << maxn][maxn];
double p[maxn][maxn];
int n;
int main() {
scanf("%d", &n);
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
scanf("%lf", &p[i][j]);
}
}
memset(dp, 0, sizeof(dp));
dp[1][0] = 1;
for (int i = 0; i < (1 << n); i++) {
for (int j = 0; j < n; j++) if(i&(1<<j)){
for (int k = 0; k < n; k++)if (i&(1 << k) && k != j) {
dp[i][j] = max(dp[i][j], p[j][k] * dp[i ^ (1 << k)][j] + p[k][j] * dp[i ^ (1 << j)][k]);
}
}
}
double ans = 0;
for (int i = 0; i < n; i++) {
ans = max(ans, dp[(1 << n) - 1][i]);
}
printf("%.15lf\n", ans);
return 0;
}
Educational Codeforces Round 13 E. Another Sith Tournament 概率dp+状压的更多相关文章
- Educational Codeforces Round 13 E. Another Sith Tournament 状压dp
E. Another Sith Tournament 题目连接: http://www.codeforces.com/contest/678/problem/E Description The rul ...
- Educational Codeforces Round 74 (Rated for Div. 2)E(状压DP,降低一个m复杂度做法含有集合思维)
#define HAVE_STRUCT_TIMESPEC#include<bits/stdc++.h>using namespace std;char s[100005];int pos[ ...
- [Educational Codeforces Round 63 ] D. Beautiful Array (思维+DP)
Educational Codeforces Round 63 (Rated for Div. 2) D. Beautiful Array time limit per test 2 seconds ...
- Educational Codeforces Round 13
http://codeforces.com/contest/678 A:水题 #include<bits/stdc++.h> #define fi first #define se sec ...
- Codeforces Round #235 (Div. 2) D. Roman and Numbers 状压dp+数位dp
题目链接: http://codeforces.com/problemset/problem/401/D D. Roman and Numbers time limit per test4 secon ...
- Codeforces Round #531 (Div. 3) F. Elongated Matrix(状压DP)
F. Elongated Matrix 题目链接:https://codeforces.com/contest/1102/problem/F 题意: 给出一个n*m的矩阵,现在可以随意交换任意的两行, ...
- Educational Codeforces Round 13 D:Iterated Linear Function(数论)
http://codeforces.com/contest/678/problem/D D. Iterated Linear Function Consider a linear function f ...
- Educational Codeforces Round 13 D. Iterated Linear Function (矩阵快速幂)
题目链接:http://codeforces.com/problemset/problem/678/D 简单的矩阵快速幂模版题 矩阵是这样的: #include <bits/stdc++.h&g ...
- Educational Codeforces Round 13 D. Iterated Linear Function 水题
D. Iterated Linear Function 题目连接: http://www.codeforces.com/contest/678/problem/D Description Consid ...
随机推荐
- Android之动态图片
在Android中,比起静态图片来动态图片会更加生动更加酷炫,因为这种视觉效果,你应该会发现我们手机中大多数应用软件的导航页面也都是采用动态图片来展示.动态图片的格式有gif.png格式等等. 我们就 ...
- C#完全无客户端访问Oracle
网上太多的C#无客户端访问oracle案例,经我测试无一成功,特将我在oracle官网上和自己琢磨总结,终于成功,废话不多说,直接上项目. 一,准备条件 (由于我这里是用的控制台程序来测试的,所以将上 ...
- PictureBox控件鼠标进入的手形改变和提示
PictureBox控件载入了图片后,如果要设置其为链接作用的功能,一般需要当鼠标移动到其上时鼠标自动变为手形以提示用户此时可以点击,如果图形无法方便辨识链接的具体功能,最好此时给与一定提示. 1.鼠 ...
- lua定时器与定时任务的接口设计
在所有的服务器编程当中,定时任务永远是一个不可或缺的需求.最直接的需求就是,每天凌晨0点0分的时候总是有一大堆的各种精力重置.怎么来设计这个接口呢,想了几个方案: 每秒触发 每分钟触发 每整点触发 每 ...
- MVC 开启gzip压缩
using System.IO; using System.IO.Compression; using System.Web; using System.Web.Mvc; public class C ...
- AMQ学习笔记 - 13. Spring-jms的配置
概述 如何使用spring-jms来简化jms客户端的开发? 这篇文章主要记录如何配置以便以后复用,而非原理的讲解,有些内容我 没有掌握原理. producer端 producer端负责发送,这里使用 ...
- java完整的代码执行过程 堆栈+方法区
07\15-面向对象(static关键字-内存图解)
- [Guava源码分析] Preconditions 前置条件
我的技术博客经常被流氓网站恶意爬取转载.请移步原文:http://www.cnblogs.com/hamhog/p/3874170.html,享受整齐的排版.有效的链接.正确的代码缩进.更好的阅读体验 ...
- MySQL事务机制
事务机制的特性通常被概括为"ACID原则" A(Atomic) 原子性: 构成一个事务的所有语句应该是一个独立的逻辑单元,要么全部执行成功, 要么一个都不成功, 你不能只执行他们当 ...
- 转: js操作cookie
cookie的几个概念 http://dearhappyfish.blog.163.com/blog/static/1901094152012422114753777/ js操作cookie 转:ht ...