Kernel Knights

题目链接:

http://acm.hust.edu.cn/vjudge/contest/127407#problem/K

Description


Jousting is a medieval contest that involves people on horseback trying to strike each other with wooden
lances while riding at high speed. A total of 2n knights have entered a jousting tournament — n knights
from each of the two great rival houses. Upon arrival, each knight has challenged a single knight from
the other house to a duel.
A kernel is defined as some subset S of knights with the following two properties:
• No knight in S was challenged by another knight in S.
• Every knight not in S was challenged by some knight in S.
Given the set of the challenges issued, find one kernel. It is guaranteed that a kernel always exists.

Input


The input file contains several test cases, each of them as described below.
The first line contains an integer n (1 ≤ n ≤ 100000) — the number of knights of each house. The
knights from the first house are denoted with integers 1 through n, knights from the second house with
integers n + 1 through 2n.
The following line contains integers f1, f2, . . ., fn — the k-th integer fk is the index of the knight
challenged by knight k (n + 1 ≤ fk ≤ 2n).
The following line contains integers s1, s2 , . . ., sn — the k-th integer sk is the index of the knight
challenged by knight n + k (1 ≤ sk ≤ n).

Output


For each case, output the indices of the knights in the kernel on a single line. If there is more than one
solution, you may output any one.

Sample Input


4
5 6 7 7
1 3 2 3

Sample Output


1 2 4 8


##题意:

有两队骑士各n人,每位骑士会挑战对方队伍的某一个位骑士. (可能相同)
要求找出一个集合S,使得:(任意满足条件即可)
集合S中的骑士不会互相挑战.
每个集合外的骑士必定会被集合S内的某个骑士挑战.


##题解:

一开始看题有点懵比,题目的两层要求绕得有点糊涂.
在模拟样例的过程中发现,有些点是必须在S中的,而有些必须在S外,有些是不固定的.
首先,如果某个骑士没有被人挑战,那么他一定要位于S中. (反之他在集合外的话,就违背了条件2).
然后,如果某个骑士被确定在S中时,那么他的挑战对象一定要在S外. (反之违背条件1).
若某个骑士i被多个人挑战,那么要先对这些挑战者逐一进行上述判断,若某个挑战者被确定在S外,那么说明能使骑士i满足条件2的挑战者少了一个(等同于少了一个挑战者). 若所有挑战者都在S外,那么i一定在S内.

一开始觉得上述条件不够充分,特别是存在多个挑战者时,考虑会不会存在某个挑战者无法确定而导致i确定不了.
考虑无法确定的情况:
首先一定是成对出现,若只出现一个,那么由上述判据一定能够确定它.
比如样例中的15(互相挑战),上述判据就无法确定. 这时候可以推断1和5只要任意一个在集合S内都满足情况.

直接用dfs或bfs搜状态即可,从入度为0的点开始,若某点的父结点被确定在S外,则将该点的入度减少1.


##代码:
``` cpp
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define LL long long
#define eps 1e-8
#define maxn 201000
#define mod 100000007
#define inf 0x3f3f3f3f
#define mid(a,b) ((a+b)>>1)
#define IN freopen("in.txt","r",stdin);
using namespace std;

int reach[maxn];

int mp[maxn];

bool vis[maxn];

int ans[maxn];

void dfs(int cur) {

vis[cur] = 1;

if(vis[mp[cur]]) return;

if(ans[cur] == 1) { // in;

ans[mp[cur]] = -1;

dfs(mp[cur]);

return;

}

reach[mp[cur]]--; // out;
if(!reach[mp[cur]]) {
ans[mp[cur]] = 1;
dfs(mp[cur]);
}

}

int main(int argc, char const *argv[])

{

//IN;

int n;
while(scanf("%d", &n) != EOF)
{
memset(reach, 0, sizeof(reach));
for(int i=1; i<=2*n; i++) {
int x; scanf("%d", &x);
mp[i] = x;
reach[x]++;
} memset(vis, 0, sizeof(vis));
memset(ans, 0, sizeof(ans));
for(int i=1; i<=2*n; i++) {
if(!vis[i] && !reach[i]) {
ans[i] = 1;
dfs(i);
}
} vector<int> p; p.clear();
for(int i=1; i<=2*n; i++) {
if(ans[i] == -1) continue;
if(ans[i] == 1) p.push_back(i);
else if(i <= n) p.push_back(i);
}
int sz = p.size();
for(int i=0; i<sz; i++) {
printf("%d%c", p[i], i==sz-1?'\n':' ');
}
} return 0;

}

UVALive 7334 Kernel Knights (dfs)的更多相关文章

  1. LeetCode Subsets II (DFS)

    题意: 给一个集合,有n个可能相同的元素,求出所有的子集(包括空集,但是不能重复). 思路: 看这个就差不多了.LEETCODE SUBSETS (DFS) class Solution { publ ...

  2. LeetCode Subsets (DFS)

    题意: 给一个集合,有n个互不相同的元素,求出所有的子集(包括空集,但是不能重复). 思路: DFS方法:由于集合中的元素是不可能出现相同的,所以不用解决相同的元素而导致重复统计. class Sol ...

  3. HDU 2553 N皇后问题(dfs)

    N皇后问题 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Description 在 ...

  4. 深搜(DFS)广搜(BFS)详解

    图的深搜与广搜 一.介绍: p { margin-bottom: 0.25cm; direction: ltr; line-height: 120%; text-align: justify; orp ...

  5. 【算法导论】图的深度优先搜索遍历(DFS)

    关于图的存储在上一篇文章中已经讲述,在这里不在赘述.下面我们介绍图的深度优先搜索遍历(DFS). 深度优先搜索遍历实在访问了顶点vi后,访问vi的一个邻接点vj:访问vj之后,又访问vj的一个邻接点, ...

  6. 深度优先搜索(DFS)与广度优先搜索(BFS)的Java实现

    1.基础部分 在图中实现最基本的操作之一就是搜索从一个指定顶点可以到达哪些顶点,比如从武汉出发的高铁可以到达哪些城市,一些城市可以直达,一些城市不能直达.现在有一份全国高铁模拟图,要从某个城市(顶点) ...

  7. 深度优先搜索(DFS)和广度优先搜索(BFS)

    深度优先搜索(DFS) 广度优先搜索(BFS) 1.介绍 广度优先搜索(BFS)是图的另一种遍历方式,与DFS相对,是以广度优先进行搜索.简言之就是先访问图的顶点,然后广度优先访问其邻接点,然后再依次 ...

  8. 图的 储存 深度优先(DFS)广度优先(BFS)遍历

    图遍历的概念: 从图中某顶点出发访遍图中每个顶点,且每个顶点仅访问一次,此过程称为图的遍历(Traversing Graph).图的遍历算法是求解图的连通性问题.拓扑排序和求关键路径等算法的基础.图的 ...

  9. 搜索——深度优先搜索(DFS)

    设想我们现在身处一个巨大的迷宫中,我们只能自己想办法走出去,下面是一种看上去很盲目但实际上会很有效的方法. 以当前所在位置为起点,沿着一条路向前走,当碰到岔道口时,选择其中一个岔路前进.如果选择的这个 ...

随机推荐

  1. Oracle Create DBLink

    DROP PUBLIC DATABASE LINK ORA11G_DBLINK; CREATE   PUBLIC   DATABASE LINK ORA11G_DBLINKCONNECT TO SYS ...

  2. Linux 下查看文件字符编码和转换编码

    Linux 下查看文件字符编码和转换编码 如果你需要在Linux中操作windows下的文件,那么你可能会经常遇到文件编码转换的问题.Windows中默认的文件格式是GBK(gb2312),而Linu ...

  3. 宏btr_pcur_open_on_user_rec

    参考http://wqtn22.iteye.com/blog/1820436 http://blog.jcole.us/2013/01/10/btree-index-structures-in-inn ...

  4. 函数buf_LRU_add_block

    /******************************************************************//** Adds a block to the LRU list ...

  5. Jquery实现让滚动条始终保持在最下方

    $(document).ready(function(){ $("#submit").click(function(){ $("#info").append(& ...

  6. JS全局变量VAR和THIS

    (注意)JS全局变量VAR和THIS 很多人都觉得在javascript声明一个变量,加var和不加var没有什么区别,实际上是一个错误的观点,如果在函数外面,也就是说在window区域加不加var确 ...

  7. apache开源项目-- Velocity

    Velocity是一个基于java的模板引擎(template engine).它允许任何人仅仅简单的使用模板语言(template language)来引用由java代码定义的对象. 当Veloci ...

  8. 最简单的视音频播放示例8:DirectSound播放PCM

    本文记录DirectSound播放音频的技术.DirectSound是Windows下最常见的音频播放技术.目前大部分的音频播放应用都是通过DirectSound来播放的.本文记录一个使用Direct ...

  9. zoj 2095 Divisor Summation

    和 hdu 1215 一个意思// 只是我 1坑了 1 时应该为0 #include <iostream> #include <math.h> #include <map ...

  10. poj 3181 Dollar Dayz

    题意:给定一个数p,要求用K种币值分别为1,2,3...K的硬币组成p,问方案数,1,2,2和2,2,1算一种方案即与顺序无关,n <= 1000,k <= 100// 用完全背包做了 这 ...