描述


http://www.lydsy.com/JudgeOnline/problem.php?id=1833

统计\(a~b\)中数字\(0,1,2,...,9\)分别出现了多少次.

分析


数位dp真是细节又多又容易出错,我都懒得看题解,所以也就懒得写题解了...

注意细节吧还是...

 #include <bits/stdc++.h>
using namespace std; typedef long long ll;
ll a,b;
ll A[],B[],num[];
ll f[][][]; void solve(ll x,ll *a){
if(x==) return;
if(x<){
for(int i=;i<=x;i++) a[i]=;
return;
}
int cnt=;
ll t=;
while(x) num[++cnt]=x%, x/=;
for(int i=;i<cnt;i++)for(int j=;j<=;j++)for(int k=;k<=;k++) a[k]+=f[i][j][k];
for(int i=;i<cnt;i++){
for(int j=;j<num[i];j++)for(int k=;k<=;k++) a[k]+=f[i][j][k];
a[num[i]]+=t+; t=t+num[i]*(ll)pow(,i-);
}
for(int j=;j<num[cnt];j++)for(int k=;k<=;k++) a[k]+=f[cnt][j][k];
a[num[cnt]]+=t+;
}
int main(){
scanf("%lld%lld",&a,&b);
for(int i=;i<=;i++) f[][i][i]=;
for(int i=;i<=;i++){
for(int j=;j<=;j++)for(int k=;k<=;k++) f[i][][k]+=f[i-][j][k];
for(int j=;j<=;j++)for(int k=;k<=;k++) f[i][j][k]=f[i][][k];
for(int j=;j<=;j++) f[i][j][j]+=(ll)pow(,i-);
}
solve(b,B); solve(a-,A);
for(int k=;k<;k++) printf("%lld ",B[k]-A[k]);
printf("%lld\n",B[]-A[]);
return ;
}

1833: [ZJOI2010]count 数字计数

Time Limit: 3 Sec  Memory Limit: 64 MB
Submit: 2569  Solved: 1132
[Submit][Status][Discuss]

Description

给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次。

Input

输入文件中仅包含一行两个整数a、b,含义如上所述。

Output

输出文件中包含一行10个整数,分别表示0-9在[a,b]中出现了多少次。

Sample Input

1 99

Sample Output

9 20 20 20 20 20 20 20 20 20

HINT

30%的数据中,a<=b<=10^6;
100%的数据中,a<=b<=10^12。

Source

BZOJ_1833_[ZJOI2010]_数字计数_(数位dp)的更多相关文章

  1. BZOJ_1833_[ZJOI2010]count 数字计数_数位DP

    BZOJ_1833_[ZJOI2010]count 数字计数_数位DP 题意: 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 分析: 数位DP f[i][ ...

  2. BZOJ1833 ZJOI2010 count 数字计数 【数位DP】

    BZOJ1833 ZJOI2010 count 数字计数 Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包 ...

  3. 【BZOJ】1833: [ZJOI2010] count 数字计数(数位dp)

    题目 传送门:QWQ 分析 蒟蒻不会数位dp,又是现学的 用$ dp[i][j][k] $ 表示表示长度为i开头j的所有数字中k的个数 然后预处理出这个数组,再计算答案 代码 #include < ...

  4. 【BZOJ1833】[ZJOI2010] count 数字计数(数位DP)

    点此看题面 大致题意: 求在给定的两个正整数\(a\)和\(b\)中的所有整数中,\(0\sim9\)各出现了多少次. 数位\(DP\) 很显然,这是一道数位\(DP\)题. 我们可以用前缀和的思想, ...

  5. [BZOJ 1833] [ZJOI2010] count 数字计数 【数位DP】

    题目链接:BZOJ - 1833 题目分析 数位DP .. 用 f[i][j][k] 表示第 i 位是 j 的 i 位数共有多少个数码 k . 然后差分询问...Get()中注意一下,如果固定了第 i ...

  6. bzoj 1833: [ZJOI2010]count 数字计数【数位dp】

    非典型数位dp 先预处理出f[i][j][k]表示从后往前第i位为j时k的个数,然后把答案转换为ans(r)-ans(l-1),用预处理出的f数组dp出f即可(可能也不是dp吧--) #include ...

  7. bzoj 1833 [ZJOI2010]count 数字计数(数位DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1833 [题意] 统计[a,b]区间内各数位出现的次数. [思路] 设f[i][j][k ...

  8. 【洛谷】2602: [ZJOI2010]数字计数【数位DP】

    P2602 [ZJOI2010]数字计数 题目描述 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 输入输出格式 输入格式: 输入文件中仅包含一行两个整数a ...

  9. 洛谷P2602 [ZJOI2010]数字计数 题解 数位DP

    题目链接:https://www.luogu.com.cn/problem/P2602 题目大意: 计算区间 \([L,R]\) 范围内 \(0 \sim 9\) 各出现了多少次? 解题思路: 使用 ...

随机推荐

  1. 九度OJ 1283 第一个只出现一次的字符

    题目地址:http://ac.jobdu.com/problem.php?pid=1283 题目描述: 在一个字符串(1<=字符串长度<=10000,全部由大写字母组成)中找到第一个只出现 ...

  2. Poj 1006 / OpenJudge 2977 1006 Biorhythms/生理周期

    1.链接地址: http://poj.org/problem?id=1006 http://bailian.openjudge.cn/practice/2977 2.题目: Biorhythms Ti ...

  3. LeetCode FindMinimuminRotatedSorteArray &&FindMinimuminRotatedSorteArray2

    LeetCode上这两道题主要是使用二分搜索解决,是二分搜索算法的一个应用,根据条件每次舍弃一半,保留一半. 首先第一题: FindMinimuminRotatedSorteArray(时间复杂度为二 ...

  4. 支持HTML5新标签

    IE8/IE7/IE6支持通过document.createElement方法产生的标签,               可以利用这一特性让这些浏览器支持HTML5新标签,               ...

  5. C# partial 说明

    1. 什么是局部类型? C# 2.0 引入了局部类型的概念.局部类型允许我们将一个类.结构或接口分成几个部分,分别实现在几个不同的.cs文件中. 局部类型适用于以下情况: (1) 类型特别大,不宜放在 ...

  6. yii2 model常用验证规则

    //字段必填[['username'],'required','message'=>'{attribute}不能为空!'][['username','password'], 'required' ...

  7. Android开发中activity切换动画的实现

    (1)我们在MainAcitvity中定义两个textview,用于点击触发切换Activity事件,下面是布局文件代码. <LinearLayout android:layout_width= ...

  8. HBase Shell(转)

    HBase 为用户提供了一个非常方便的使用方式, 我们称之为“HBase Shell”.HBase Shell 提供了大多数的 HBase 命令, 通过 HBase Shell 用户可以方便地创建.删 ...

  9. MVC-列表页操作按钮调用脚本

    如上图所示功能:点击右边的“编辑”和“重置按钮”,调用js实现弹出框功能. 1.写脚本: <script type="text/javascript"> functio ...

  10. hdu 3303 Harmony Forever (线段树 + 抽屉原理)

    http://acm.hdu.edu.cn/showproblem.php?pid=3303 Harmony Forever Time Limit: 20000/10000 MS (Java/Othe ...