描述


http://www.lydsy.com/JudgeOnline/problem.php?id=1833

统计\(a~b\)中数字\(0,1,2,...,9\)分别出现了多少次.

分析


数位dp真是细节又多又容易出错,我都懒得看题解,所以也就懒得写题解了...

注意细节吧还是...

 #include <bits/stdc++.h>
using namespace std; typedef long long ll;
ll a,b;
ll A[],B[],num[];
ll f[][][]; void solve(ll x,ll *a){
if(x==) return;
if(x<){
for(int i=;i<=x;i++) a[i]=;
return;
}
int cnt=;
ll t=;
while(x) num[++cnt]=x%, x/=;
for(int i=;i<cnt;i++)for(int j=;j<=;j++)for(int k=;k<=;k++) a[k]+=f[i][j][k];
for(int i=;i<cnt;i++){
for(int j=;j<num[i];j++)for(int k=;k<=;k++) a[k]+=f[i][j][k];
a[num[i]]+=t+; t=t+num[i]*(ll)pow(,i-);
}
for(int j=;j<num[cnt];j++)for(int k=;k<=;k++) a[k]+=f[cnt][j][k];
a[num[cnt]]+=t+;
}
int main(){
scanf("%lld%lld",&a,&b);
for(int i=;i<=;i++) f[][i][i]=;
for(int i=;i<=;i++){
for(int j=;j<=;j++)for(int k=;k<=;k++) f[i][][k]+=f[i-][j][k];
for(int j=;j<=;j++)for(int k=;k<=;k++) f[i][j][k]=f[i][][k];
for(int j=;j<=;j++) f[i][j][j]+=(ll)pow(,i-);
}
solve(b,B); solve(a-,A);
for(int k=;k<;k++) printf("%lld ",B[k]-A[k]);
printf("%lld\n",B[]-A[]);
return ;
}

1833: [ZJOI2010]count 数字计数

Time Limit: 3 Sec  Memory Limit: 64 MB
Submit: 2569  Solved: 1132
[Submit][Status][Discuss]

Description

给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次。

Input

输入文件中仅包含一行两个整数a、b,含义如上所述。

Output

输出文件中包含一行10个整数,分别表示0-9在[a,b]中出现了多少次。

Sample Input

1 99

Sample Output

9 20 20 20 20 20 20 20 20 20

HINT

30%的数据中,a<=b<=10^6;
100%的数据中,a<=b<=10^12。

Source

BZOJ_1833_[ZJOI2010]_数字计数_(数位dp)的更多相关文章

  1. BZOJ_1833_[ZJOI2010]count 数字计数_数位DP

    BZOJ_1833_[ZJOI2010]count 数字计数_数位DP 题意: 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 分析: 数位DP f[i][ ...

  2. BZOJ1833 ZJOI2010 count 数字计数 【数位DP】

    BZOJ1833 ZJOI2010 count 数字计数 Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包 ...

  3. 【BZOJ】1833: [ZJOI2010] count 数字计数(数位dp)

    题目 传送门:QWQ 分析 蒟蒻不会数位dp,又是现学的 用$ dp[i][j][k] $ 表示表示长度为i开头j的所有数字中k的个数 然后预处理出这个数组,再计算答案 代码 #include < ...

  4. 【BZOJ1833】[ZJOI2010] count 数字计数(数位DP)

    点此看题面 大致题意: 求在给定的两个正整数\(a\)和\(b\)中的所有整数中,\(0\sim9\)各出现了多少次. 数位\(DP\) 很显然,这是一道数位\(DP\)题. 我们可以用前缀和的思想, ...

  5. [BZOJ 1833] [ZJOI2010] count 数字计数 【数位DP】

    题目链接:BZOJ - 1833 题目分析 数位DP .. 用 f[i][j][k] 表示第 i 位是 j 的 i 位数共有多少个数码 k . 然后差分询问...Get()中注意一下,如果固定了第 i ...

  6. bzoj 1833: [ZJOI2010]count 数字计数【数位dp】

    非典型数位dp 先预处理出f[i][j][k]表示从后往前第i位为j时k的个数,然后把答案转换为ans(r)-ans(l-1),用预处理出的f数组dp出f即可(可能也不是dp吧--) #include ...

  7. bzoj 1833 [ZJOI2010]count 数字计数(数位DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1833 [题意] 统计[a,b]区间内各数位出现的次数. [思路] 设f[i][j][k ...

  8. 【洛谷】2602: [ZJOI2010]数字计数【数位DP】

    P2602 [ZJOI2010]数字计数 题目描述 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 输入输出格式 输入格式: 输入文件中仅包含一行两个整数a ...

  9. 洛谷P2602 [ZJOI2010]数字计数 题解 数位DP

    题目链接:https://www.luogu.com.cn/problem/P2602 题目大意: 计算区间 \([L,R]\) 范围内 \(0 \sim 9\) 各出现了多少次? 解题思路: 使用 ...

随机推荐

  1. android 电话拨号器

    电话拨号器(重点)            1.产品经理: 需求分析文档,设计原型图    2.UI工程师: 设计UI界面    3.架构师: 写架构,接口文档    4.码农: 服务端,客户端     ...

  2. String练习

    /*1,模拟一个trim方法,去除字符串两端的空格.    思路:    1,判断字符串第一个位置是否是空格,如果是继续向下判断,直到不是空格为止.        结尾处判断空格也是如此.    2, ...

  3. 16_会话技术_Session案例

    [购物车中的信息保存] [Book.java] package com.Higgin.shopping; public class Book { private String id; private ...

  4. 使用curl获取网站的http的状态码

    发布:thebaby   来源:net     [大 中 小] 本文分享一例shell脚本,一个使用curl命令获取网站的httpd状态码的例子,有需要的朋友参考下.本文转自:http://www.j ...

  5. ECshop网点程序优化-自动生成类目页Keywords、Desciption Meta

    ECshop支持针对每个新建的类目自定义Keywords.Description Meta信息,好处就不用说了,帮助SEO或者让浏览者了解这是什么页面,但如果有几百个类目的时候,人工去写这些类目又有点 ...

  6. SQL日期(转)

    通常,你需要获得当前日期和计算一些其他的日期,例如,你的程序可能需要判断一个月的第一天或者最后一天.你们大部分人大概都知道怎样把日期进行分割 (年.月.日等),然后仅仅用分割出来的年.月.日等放在几个 ...

  7. JAVA String 类

    java String类中的常用方法:public char charAt(int index)返回字符串中第index个字符:public int length()返回字符串的长度:public i ...

  8. 2016031901 - U盘安装ubuntu系统

    使用U盘安装ubuntu系统 01.进入u盘安装 个人使用的是闪迪U盘安装 02. 个人重装ubuntu 03.进入ubuntu安装界面 04.进入语言界面 05.准备安装ubuntu 06.ubun ...

  9. windows下STM32开发环境的搭建

    一.概述 1.说明 笔者已经写了一篇Linux下STM32开发环境的搭建 ,这两篇文章的最区别在于开发环境所处的系统平台不一样,而其实这个区别对于开发环境的搭建其实影响不大,制作局部上的操作上发生了改 ...

  10. MINA实战

    backlog,放入到acceptor队列中还未处理最大数量: solinger参数,用来说明close之后是否直接关闭:参数越大,等待时间越长. mina中的udp处理,即使对端关闭也会继续传输,但 ...