【CEOI2004】锯木厂选址
【题目描述】
从山顶上到山底下沿着一条直线种植了n棵老树。当地的政府决定把他们砍下来。为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂。
木材只能按照一个方向运输:朝山下运。山脚下有一个锯木厂。另外两个锯木厂将新修建在山路上。你必须决定在哪里修建两个锯木厂,使得传输的费用总和最小。假定运输每公斤木材每米需要一分钱。
【输入描述】
输入的第一行为一个正整数n——树的个数(2≤n≤20 000)。树从山顶到山脚按照1,2……n标号。接下来n行,每行有两个正整数(用空格分开)。第i+1行含有:wi——第i棵树的重量(公斤为单位)和 di——第i棵树和第i+1棵树之间的距离,1≤wi ≤10 000,0≤di≤10 000。最后一个数dn,表示第n棵树到山脚的锯木厂的距离。保证所有树运到山脚的锯木厂所需要的费用小于2000 000 000分。
【输出描述】
输出只有一行一个数:最小的运输费用。
【分析】
斜率优化,看别人的,只提供代码,以后慢慢总结。(觉得自己实在是太水了==)
贴上链接:
#include <cstdlib>
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
const int maxn=;
const int INF=;
using namespace std;
int sw[maxn],sd[maxn],cost[maxn],Q[*maxn];
inline double g(int i,int j) {return ((sw[i]*sd[i]-sw[j]*sd[j]*1.0)/(sw[i]-sw[j]));}
inline int all(int i,int j) {return cost[j]-cost[i-]-sw[i-]*(sd[j]-sd[i-]);}
int main()
{
int n,i,front=,rear=,ans=INF,w,d;
//文件操作
freopen("two.in","r",stdin);
freopen("two.out","w",stdout);
memset(sw,,sizeof(sw));
memset(sd,,sizeof(sd));
memset(cost,,sizeof(cost));
scanf("%d",&n);
//从山顶往下输入
for (i=;i<=n;i++)
{
scanf("%d%d",&w,&d);
sw[i]=sw[i-]+w;
sd[i+]=sd[i]+d;
cost[i+]=cost[i]+sw[i]*d;
}Q[]=;//初始化队列
for (i=;i<=n;i++)
{
//满足队列单调性
while (front<rear && g(Q[front],Q[front+])<=sd[i]) front++;
ans=min(ans,cost[Q[front]]+all(Q[front]+,i)+all(i+,n+));
while (front<rear && g(Q[rear],i)<g(Q[rear-],Q[rear]))rear--;//弹出队列
Q[++rear]=i;//加入队列
}
printf("%d\n",ans);
return ;
}
【CEOI2004】锯木厂选址的更多相关文章
- P4360 [CEOI2004]锯木厂选址
P4360 [CEOI2004]锯木厂选址 这™连dp都不是 \(f_i\)表示第二个锯木厂设在\(i\)的最小代价 枚举1号锯木厂 \(f_i=min_{0<=j<i}(\sum_{i= ...
- luoguP4360 [CEOI2004]锯木厂选址
题目链接 luoguP4360 [CEOI2004]锯木厂选址 题解 dis:后缀和 sum:前缀和 补集转化,减去少走的,得到转移方程 dp[i] = min(tot - sumj * disj - ...
- 动态规划(斜率优化):[CEOI2004]锯木厂选址
锯木场选址(CEOI2004) 从山顶上到山底下沿着一条直线种植了n棵老树.当地的政府决定把他们砍下来.为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂. 木材只能按照一个方向运输:朝山下运.山脚下有 ...
- [BZOJ2684][CEOI2004]锯木厂选址
BZOJ权限题! Description 从山顶上到山底下沿着一条直线种植了n棵老树.当地的政府决定把他们砍下来.为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂. 木材只能按照一个方向运输:朝山下运 ...
- cogs 362. [CEOI2004]锯木厂选址
★★★ 输入文件:two.in 输出文件:two.out 简单对比 时间限制:0.1 s 内存限制:32 MB 从山顶上到山底下沿着一条直线种植了n棵老树.当地的政府决定把他们砍下来. ...
- 2018.08.28 洛谷P4360 [CEOI2004]锯木厂选址(斜率优化dp)
传送门 一道斜率优化dp入门题. 是这样的没错... 我们用dis[i]表示i到第三个锯木厂的距离,sum[i]表示前i棵树的总重量,w[i]为第i棵树的重量,于是发现如果令第一个锯木厂地址为i,第二 ...
- LG4360 [CEOI2004]锯木厂选址
题意 原题来自:CEOI 2004 从山顶上到山底下沿着一条直线种植了 n 棵老树.当地的政府决定把他们砍下来.为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂. 木材只能朝山下运.山脚下有一个锯木厂 ...
- 洛谷P4360 [CEOI2004]锯木厂选址(斜率优化)
传送门 我可能根本就没有学过斜率优化…… 我们设$dis[i]$表示第$i$棵树到山脚的距离,$sum[i]$表示$w$的前缀和,$tot$表示所有树运到山脚所需要的花费,$dp[i]$表示将第二个锯 ...
- luogu P4360 [CEOI2004]锯木厂选址
斜率优化dp板子题[迫真] 这里从下往上标记\(1-n\)号点 记\(a_i\)表示前缀\(i\)里面树木的总重量,\(l_i\)表示\(i\)到最下面的距离,\(s_i\)表示\(1\)到\(i-1 ...
- [CEOI2004]锯木厂选址 斜率优化DP
斜率优化DP 先考虑朴素DP方程, f[i][k]代表第k个厂建在i棵树那里的最小代价,最后答案为f[n+1][3]; f[i][k]=min(f[j][k-1] + 把j+1~i的树都运到i的代价) ...
随机推荐
- Java中的移位操作符
记住所有的移动位数,针对的都是补码来讲的,所以要先将十进制整数转换成补码后,然后再来进行移位操作 移位操作 还要注意类型的约束条件,例如int,移动范围是0-31位,所以看补码只能看最后五位,这才是有 ...
- VisualSVN_Server安装_配置图文教程
前言: 不错的文章 对一个我这样的菜鸟来说,这个教程很容易理解,说它图文并茂并不为过.所以就把它整理成了文档,给大家分享. 文章版权归原作者Forrest Zhang所有. 原文出处: http:// ...
- Java编译原理
http://wenku.baidu.com/view/f9b1734b87c24028915fc3a3.html Java编译原理 1. 关于动态加载机制 学习Java比C++更容易理解OOP的思想 ...
- 图论(KM算法,脑洞题):HNOI 2014 画框(frame)
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABPoAAANFCAIAAABtIwXVAAAgAElEQVR4nOydeVxTV/r/n9ertaJEC4
- FZYZOJ-1880 【UFO】水管
P1880 -- [ufo]水管 时间限制:1000MS 内存限制:131072KB 通过/提交人数:32/100 状态: 标签: 数学问题-组合数学 无 ...
- [Locked] Longest Substring with At Most Two Distinct Characters
Longest Substring with At Most Two Distinct Characters Given a string, find the length of the longes ...
- <离散数学>学习笔记1--逻辑和证明
今天开始离散数学的自学旅程. 主题:逻辑和证明 逻辑规则给出数学语句的准确含义.逻辑对计算机科学有着重要作用.为了理解数学,我么必须理解正确的数学论证是由什么组成的.只要证明一个数学语句是真的,我们就 ...
- kafka入门教程
1.Kafka独特设计在什么地方?2.Kafka如何搭建及创建topic.发送消息.消费消息?3.如何书写Kafka程序?4.数据传输的事务定义有哪三种?5.Kafka判断一个节点是否活着有哪两个条件 ...
- PHP实现大文件的上传设置
打开php.ini,首先找到 ;;;;;;;;;;;;;;;; ; File Uploads ; ;;;;;;;;;;;;;;;; 区域,有影响文件上传的以下几个参数: file_uploads = ...
- 从一个简单的Java单例示例谈谈并发 JMM JUC
原文: http://www.open-open.com/lib/view/open1462871898428.html 一个简单的单例示例 单例模式可能是大家经常接触和使用的一个设计模式,你可能会这 ...