3种版本的答案,第一种使用virtual top and bottom site, 但有backwash的问题,解决这个问题有两种方法:

1. 使用2个WQUUF, 但会增加memory. One for checking if the system percolates(include virtual top and bottom), and the other to check if a given cell is full(only include virtual top). 而且要注意,判断site 是否open只能用boolean ,不然memory 就会超出限制。记住:选择合适的data structure 很重要!!

2. 仍然使用1个WQUUF, 但不使用virtual top and bottom site, 增加判断connect to top 和connect to bottom, 如果出现site 既connect to top 也connect to bottom, 那么percolate.

I found a solution that works really well, that helped me to get bonus points. The general idea is to use only one WQUUF (N*N) and an array (N*N) that contains info about site status. 
We create ONE WQUUF object of size N * N, and allocate a separate array of size N * N to keep the status of each site: blocked, open, connect to top, connect to bottom. I use bit operation for the status so for each site, it could have combined status like Open and connect to top.
 
The most important operation is open(int i, int j): we need to union the newly opened site (let’s call it site ‘S’) S with the four adjacent neighbor sites if possible. For each possible neighbor site(Let’s call it ‘neighbor’), we first call find(neighbor) to get the root of that connected component, and retrieves the status of that root (Let’s call it ‘status’), next, we do Union(S, neighbor); we do the similar operation for at most 4 times, and we do a 5th find(S) to get the root of the newly (copyright @sigmainfy) generated connected component results from opening the site S, finally we update the status of the new root by combining the old status information into the new root in constant time. I leave the details of how to combine the information to update the the status of the new root to the readers, which would not be hard to think of.
 
For the isFull(int i, int j), we need to find the the root site in the connected component which contains site (i, j) and check the status of the root. 
For the isOpen(int i, int j) we directly return the status.
For percolates(), there is a way to make it constant time even though we do not have virtual top or bottom sites: think about why?
So the most important operation  open(int i, int j) will involve 4 union() and 5 find() API calls.
 
I am working on this but I think I understand it. Don't use virtual sites. Find(p) returns the same value for every p in the same component. For every open, call find(p) on neighbors and note down the status of each of the roots of neighbors. I( use a byte array where 0 is closed ; 1 is open. 2 is connectedness to top; 3 is connected to bottom and 4 is both.)

If any of the neighbors have connected to both set or (at least 1 is connected to top AND atleast 1 is connected to bottom) then set some local flag both to true

If connected to top is true set local flag top to true If connected to bottom is true set local flag bottom to true

Now after the unions with neighbors, find root of (I,j) And set its grid status to both or top or bottom.

If you do set it to both then you can also set a class variable percolatesFlag to true for use in the method percolates.

I haven't finished my implementation but it does seem like this will work.


java code

1. 有backwash

import edu.princeton.cs.algs4.WeightedQuickUnionUF;

public class Percolation {
private boolean[] openSite; //if open is 1 , block 0
private int N; //create N-by-N grid
private WeightedQuickUnionUF uf;
private int top;
private int bottom; public Percolation(int N) { // create N-by-N grid, with all sites blocked
if (N <= 0) {
throw new IllegalArgumentException("N must be bigger than 0");
}
this.N = N;
uf = new WeightedQuickUnionUF(N*N + 2);
openSite = new boolean[N*N+2]; // 0 top_visual N*N+1 bottom_visual
top = 0;
bottom = N*N +1;
for (int i = 1; i <= N*N; i++) {
openSite[i] = false; //initial all sites block
}
} public void open(int i, int j) { // open site (row i, column j) if it is not open already
validateIJ(i, j);
int index = xyTo1D(i, j);
openSite[index] = true; if (i == 1) {
uf.union(index, top);
}
if (!percolates()) {
if (i == N) {
uf.union(index, bottom);
}
}
if (i < N && openSite[index+N]) {
uf.union(index, index+N);
}
if (i > 1 && openSite[index-N]) {
uf.union(index, index-N);
}
if (j < N && openSite[index+1]) {
uf.union(index, index+1);
}
if (j > 1 && openSite[index-1]) {
uf.union(index, index-1);
} } private int xyTo1D(int i, int j) {
validateIJ(i, j);
return j + (i-1) * N;
} private void validateIJ(int i, int j) {
if (!(i >= 1 && i <= N && j >= 1 && j <= N)) {
throw new IndexOutOfBoundsException("Index is not betwwen 1 and N");
}
} public boolean isOpen(int i, int j) { // is site (row i, column j) open?
validateIJ(i, j);
return openSite[xyTo1D(i, j)];
} /*A full site is an open site that can be connected to an open site in the top row
* via a chain of neighboring (left, right, up, down) open sites.
*/
public boolean isFull(int i, int j) { // is site (row i, column j) full?
validateIJ(i, j);
return uf.connected(top, xyTo1D(i, j));
} /* Introduce 2 virtual sites (and connections to top and bottom).
* Percolates iff virtual top site is connected to virtual bottom site.
*/
public boolean percolates() { // does the system percolate?
return uf.connected(top, bottom);
} public static void main(String[] args) { // test client (optional)
}
}

2. 使用2个WQUUF

//use two WQUUF
//One way to fix this is two use two different WQUF.
//One for checking if the system percolates(include virtual top and bottom ),
//and the other to check if a given cell is full(only include virtual top). import edu.princeton.cs.algs4.WeightedQuickUnionUF; public class Percolation {
private boolean[] openSite; //if open is true , block false
private int N; //create N-by-N grid
private WeightedQuickUnionUF uf;
private WeightedQuickUnionUF ufNoBottom;
private int top;
private int bottom; public Percolation(int N) { // create N-by-N grid, with all sites blocked
if (N <= 0) {
throw new IllegalArgumentException("N must be bigger than 0");
}
this.N = N;
uf = new WeightedQuickUnionUF(N*N + 2);
ufNoBottom = new WeightedQuickUnionUF(N*N + 1);
openSite = new boolean[N*N+2]; // 0 top_visual N*N+1 bottom_visual
top = 0;
bottom = N*N +1;
for (int i = 1; i <= N*N; i++) {
openSite[i] = false; //initial all sites block
}
} public void open(int i, int j) { // open site (row i, column j) if it is not open already
validateIJ(i, j);
int index = xyTo1D(i, j);
openSite[index] = true; if (i == 1) {
uf.union(index, top);
ufNoBottom.union(index, top);
}
if (!percolates()) {
if (i == N) {
uf.union(index, bottom);
}
}
if (i < N && openSite[index+N]) {
uf.union(index, index+N);
ufNoBottom.union(index, index+N);
}
if (i > 1 && openSite[index-N]) {
uf.union(index, index-N);
ufNoBottom.union(index, index-N);
}
if (j < N && openSite[index+1]) {
uf.union(index, index+1);
ufNoBottom.union(index, index+1);
}
if (j > 1 && openSite[index-1]) {
uf.union(index, index-1);
ufNoBottom.union(index, index-1);
}
} private int xyTo1D(int i, int j) {
validateIJ(i, j);
return j + (i-1) * N;
} private void validateIJ(int i, int j) {
if (!(i >= 1 && i <= N && j >= 1 && j <= N)) {
throw new IndexOutOfBoundsException("Index is not betwwen 1 and N");
}
} public boolean isOpen(int i, int j) { // is site (row i, column j) open?
validateIJ(i, j);
return openSite[xyTo1D(i, j)];
} /*A full site is an open site that can be connected to an open site in the top row
* via a chain of neighboring (left, right, up, down) open sites.
*/
public boolean isFull(int i, int j) { // is site (row i, column j) full?
validateIJ(i, j);
return ufNoBottom.connected(top, xyTo1D(i, j));
} /* Introduce 2 virtual sites (and connections to top and bottom).
* Percolates iff virtual top site is connected to virtual bottom site.
*/
public boolean percolates() { // does the system percolate?
return uf.connected(top, bottom);
} public static void main(String[] args) { // test client (optional)
}
}

3. 最佳方法,增加flag, 只使用1个WQUUF

//use one WQUUF to avoid backwash
import edu.princeton.cs.algs4.WeightedQuickUnionUF; public class Percolation {
private boolean[] open; //blocked: false, open: true
private boolean[] connectTop;
private boolean[] connectBottom;
private int N; //create N-by-N grid
private WeightedQuickUnionUF uf;
private boolean percolateFlag; public Percolation(int N) { // create N-by-N grid, with all sites blocked
if (N <= 0) {
throw new IllegalArgumentException("N must be bigger than 0");
}
this.N = N;
uf = new WeightedQuickUnionUF(N*N);
open = new boolean[N*N];
connectTop = new boolean[N*N];
connectBottom = new boolean[N*N]; for (int i = 0; i < N*N; i++) {
open[i] = false;
connectTop[i] = false;
connectBottom[i] = false;
}
percolateFlag = false;
} public void open(int i, int j) { // open site (row i, column j) if it is not open already
validateIJ(i, j);
int index = xyTo1D(i, j);
open[index] = true; //open
boolean top = false;
boolean bottom = false; if (i < N && open[index+N]) {
if (connectTop[uf.find(index+N)] || connectTop[uf.find(index)] ) {
top = true;
}
if (connectBottom[uf.find(index+N)] || connectBottom[uf.find(index)] ) {
bottom = true;
}
uf.union(index, index+N);
}
if (i > 1 && open[index-N]) {
if (connectTop[uf.find(index-N)] || connectTop[uf.find(index)] ) {
top = true;
}
if (connectBottom[uf.find(index-N)] || connectBottom[uf.find(index)] ) {
bottom = true;
}
uf.union(index, index-N);
}
if (j < N && open[index+1]) {
if (connectTop[uf.find(index+1)] || connectTop[uf.find(index)] ) {
top = true;
}
if (connectBottom[uf.find(index+1)] || connectBottom[uf.find(index)] ) {
bottom = true;
}
uf.union(index, index+1);
}
if (j > 1 && open[index-1]) {
if (connectTop[uf.find(index-1)] || connectTop[uf.find(index)] ) {
top = true;
}
if (connectBottom[uf.find(index-1)] || connectBottom[uf.find(index)] ) {
bottom = true;
}
uf.union(index, index-1);
}
if(i == 1) {
top = true;
}
if(i == N){
bottom = true;
}
connectTop[uf.find(index)] = top;
connectBottom[uf.find(index)] = bottom;
if( connectTop[uf.find(index)] && connectBottom[uf.find(index)]) {
percolateFlag = true;
}
} private int xyTo1D(int i, int j) {
validateIJ(i, j);
return j + (i-1) * N -1;
} private void validateIJ(int i, int j) {
if (!(i >= 1 && i <= N && j >= 1 && j <= N)) {
throw new IndexOutOfBoundsException("Index is not betwwen 1 and N");
}
} public boolean isOpen(int i, int j) { // is site (row i, column j) open?
validateIJ(i, j);
return open[xyTo1D(i, j)];
} /*A full site is an open site that can be connected to an open site in the top row
* via a chain of neighboring (left, right, up, down) open sites.
*/
public boolean isFull(int i, int j) { // is site (row i, column j) full?
validateIJ(i, j);
return connectTop[uf.find(xyTo1D(i, j))];
} /* Introduce 2 virtual sites (and connections to top and bottom).
* Percolates iff virtual top site is connected to virtual bottom site.
*/
public boolean percolates() { // does the system percolate?
return percolateFlag;
} public static void main(String[] args) { // test client (optional)
}
}

Reference:

1. http://tech-wonderland.net/blog/avoid-backwash-in-percolation.html

AlgorithmsI Programming Assignment 1: Percolation的更多相关文章

  1. Programming Assignment 1: Percolation

    问题描述可以详见:http://coursera.cs.princeton.edu/algs4/assignments/percolation.html 关于QuickFindUF的javadoc:h ...

  2. AlgorithmsI Programming Assignment 1: PercolationStats.java

    import edu.princeton.cs.algs4.StdOut; import edu.princeton.cs.algs4.StdRandom; import edu.princeton. ...

  3. Coursera Algorithms Programming Assignment 1: Percolation(100分)

    题目来源http://coursera.cs.princeton.edu/algs4/assignments/percolation.html 作业分为两部分:建立模型和仿真实验. 最关键的部分就是建 ...

  4. 课程一(Neural Networks and Deep Learning),第三周(Shallow neural networks)—— 3.Programming Assignment : Planar data classification with a hidden layer

    Planar data classification with a hidden layer Welcome to the second programming exercise of the dee ...

  5. Algorithms: Design and Analysis, Part 1 - Programming Assignment #1

    自我总结: 1.编程的思维不够,虽然分析有哪些需要的函数,但是不能比较好的汇总整合 2.写代码能力,容易挫败感,经常有bug,很烦心,耐心不够好 题目: In this programming ass ...

  6. Algorithms : Programming Assignment 3: Pattern Recognition

    Programming Assignment 3: Pattern Recognition 1.题目重述 原题目:Programming Assignment 3: Pattern Recogniti ...

  7. Programming Assignment 2: Randomized Queues and Deques

    实现一个泛型的双端队列和随机化队列,用数组和链表的方式实现基本数据结构,主要介绍了泛型和迭代器. Dequeue. 实现一个双端队列,它是栈和队列的升级版,支持首尾两端的插入和删除.Deque的API ...

  8. 课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 2、编程作业常见问题与答案(Programming Assignment FAQ)

    Please note that when you are working on the programming exercise you will find comments that say &q ...

  9. Programming Assignment 5: Kd-Trees

    用2d-tree数据结构实现在2维矩形区域内的高效的range search 和 nearest neighbor search.2d-tree有许多的应用,在天体分类.计算机动画.神经网络加速.数据 ...

随机推荐

  1. oracle左右连接 完全连接 有效连接 心得总结

    左链接 A表  Left  join  B表  on  条件 示例 A表 B表 SELECT * FROM A  left JOIN B ON A.AID = B.BID; 结果: 左链接查询出来的数 ...

  2. Linux命令行编辑快捷键

    Linux命令行编辑快捷键: history 显示命令历史列表 ↑(Ctrl+p) 显示上一条命令 ↓(Ctrl+n) 显示下一条命令 !num 执行命令历史列表的第num条命令 !! 执行上一条命令 ...

  3. SQL语句优化(分享)

    一.操作符优化 1.IN 操作符 用IN写出来的SQL的优点是比较容易写及清晰易懂,这比较适合现代软件开发的风格.但是用IN的SQL性能总是比较低的,从Oracle执行的步骤来分析用IN的SQL与不用 ...

  4. Visual Studio中Js使用智能感知

    使用了第三方的JS库或框架,在VS中编写JS代码,发现真是个悲剧,完全只能手打,智能感知没了,这不符合VS的一贯做风只要在写代码的JS文件加上以下代码,就可以有智能感知了 ///<referen ...

  5. 11g 创建asm磁盘组

    [root@Oracle11g ~]# fdisk -l Disk /dev/sda: 21.4 GB, 21474836480 bytes255 heads, 63 sectors/track, 2 ...

  6. Objective-C总Runtime的那点事儿(一)消息机制【转】

    RunTime简称运行时.就是系统在运行的时候的一些机制,其中最主要的是消息机制.对于C语言,函数的调用在编译的时候会决定调用哪个函数( C语言的函数调用请看这里 ).编译完成之后直接顺序执行,无任何 ...

  7. C# XML文件操作类XmlHelper

    类的完整代码: using System;using System.Collections;using System.Xml; namespace Keleyi.Com.XmlDAL{public c ...

  8. wpf 窗体中显示当前系统时间

    先看一下效果: 这其实是我放置了两个TextBlock,上面显示当前的日期,下面显示时间. 接下来展示一下代码: 在XAML中: <StackPanel Width="205" ...

  9. java通过移位转16进制

    public class Main { public static void main(String []args) { Main main = new Main(); System.out.prin ...

  10. 复制构造函数2——深入理解

    //如果不显示定义复制构造函数,编译会出错,原因是:在创建对象s2时,调用默认复制构造函数并用对象s1对其进行初始化,致使s2中指针 //与s1中指针指向同一储存空间,当一个对象生命周期结束后调用析构 ...