AlgorithmsI Programming Assignment 1: Percolation



3种版本的答案,第一种使用virtual top and bottom site, 但有backwash的问题,解决这个问题有两种方法:
1. 使用2个WQUUF, 但会增加memory. One for checking if the system percolates(include virtual top and bottom), and the other to check if a given cell is full(only include virtual top). 而且要注意,判断site 是否open只能用boolean ,不然memory 就会超出限制。记住:选择合适的data structure 很重要!!
2. 仍然使用1个WQUUF, 但不使用virtual top and bottom site, 增加判断connect to top 和connect to bottom, 如果出现site 既connect to top 也connect to bottom, 那么percolate.
If any of the neighbors have connected to both set or (at least 1 is connected to top AND atleast 1 is connected to bottom) then set some local flag both to true
If connected to top is true set local flag top to true If connected to bottom is true set local flag bottom to true
Now after the unions with neighbors, find root of (I,j) And set its grid status to both or top or bottom.
If you do set it to both then you can also set a class variable percolatesFlag to true for use in the method percolates.
I haven't finished my implementation but it does seem like this will work.
java code
1. 有backwash
import edu.princeton.cs.algs4.WeightedQuickUnionUF;
public class Percolation {
private boolean[] openSite; //if open is 1 , block 0
private int N; //create N-by-N grid
private WeightedQuickUnionUF uf;
private int top;
private int bottom;
public Percolation(int N) { // create N-by-N grid, with all sites blocked
if (N <= 0) {
throw new IllegalArgumentException("N must be bigger than 0");
}
this.N = N;
uf = new WeightedQuickUnionUF(N*N + 2);
openSite = new boolean[N*N+2]; // 0 top_visual N*N+1 bottom_visual
top = 0;
bottom = N*N +1;
for (int i = 1; i <= N*N; i++) {
openSite[i] = false; //initial all sites block
}
}
public void open(int i, int j) { // open site (row i, column j) if it is not open already
validateIJ(i, j);
int index = xyTo1D(i, j);
openSite[index] = true;
if (i == 1) {
uf.union(index, top);
}
if (!percolates()) {
if (i == N) {
uf.union(index, bottom);
}
}
if (i < N && openSite[index+N]) {
uf.union(index, index+N);
}
if (i > 1 && openSite[index-N]) {
uf.union(index, index-N);
}
if (j < N && openSite[index+1]) {
uf.union(index, index+1);
}
if (j > 1 && openSite[index-1]) {
uf.union(index, index-1);
}
}
private int xyTo1D(int i, int j) {
validateIJ(i, j);
return j + (i-1) * N;
}
private void validateIJ(int i, int j) {
if (!(i >= 1 && i <= N && j >= 1 && j <= N)) {
throw new IndexOutOfBoundsException("Index is not betwwen 1 and N");
}
}
public boolean isOpen(int i, int j) { // is site (row i, column j) open?
validateIJ(i, j);
return openSite[xyTo1D(i, j)];
}
/*A full site is an open site that can be connected to an open site in the top row
* via a chain of neighboring (left, right, up, down) open sites.
*/
public boolean isFull(int i, int j) { // is site (row i, column j) full?
validateIJ(i, j);
return uf.connected(top, xyTo1D(i, j));
}
/* Introduce 2 virtual sites (and connections to top and bottom).
* Percolates iff virtual top site is connected to virtual bottom site.
*/
public boolean percolates() { // does the system percolate?
return uf.connected(top, bottom);
}
public static void main(String[] args) { // test client (optional)
}
}
2. 使用2个WQUUF
//use two WQUUF
//One way to fix this is two use two different WQUF.
//One for checking if the system percolates(include virtual top and bottom ),
//and the other to check if a given cell is full(only include virtual top). import edu.princeton.cs.algs4.WeightedQuickUnionUF; public class Percolation {
private boolean[] openSite; //if open is true , block false
private int N; //create N-by-N grid
private WeightedQuickUnionUF uf;
private WeightedQuickUnionUF ufNoBottom;
private int top;
private int bottom; public Percolation(int N) { // create N-by-N grid, with all sites blocked
if (N <= 0) {
throw new IllegalArgumentException("N must be bigger than 0");
}
this.N = N;
uf = new WeightedQuickUnionUF(N*N + 2);
ufNoBottom = new WeightedQuickUnionUF(N*N + 1);
openSite = new boolean[N*N+2]; // 0 top_visual N*N+1 bottom_visual
top = 0;
bottom = N*N +1;
for (int i = 1; i <= N*N; i++) {
openSite[i] = false; //initial all sites block
}
} public void open(int i, int j) { // open site (row i, column j) if it is not open already
validateIJ(i, j);
int index = xyTo1D(i, j);
openSite[index] = true; if (i == 1) {
uf.union(index, top);
ufNoBottom.union(index, top);
}
if (!percolates()) {
if (i == N) {
uf.union(index, bottom);
}
}
if (i < N && openSite[index+N]) {
uf.union(index, index+N);
ufNoBottom.union(index, index+N);
}
if (i > 1 && openSite[index-N]) {
uf.union(index, index-N);
ufNoBottom.union(index, index-N);
}
if (j < N && openSite[index+1]) {
uf.union(index, index+1);
ufNoBottom.union(index, index+1);
}
if (j > 1 && openSite[index-1]) {
uf.union(index, index-1);
ufNoBottom.union(index, index-1);
}
} private int xyTo1D(int i, int j) {
validateIJ(i, j);
return j + (i-1) * N;
} private void validateIJ(int i, int j) {
if (!(i >= 1 && i <= N && j >= 1 && j <= N)) {
throw new IndexOutOfBoundsException("Index is not betwwen 1 and N");
}
} public boolean isOpen(int i, int j) { // is site (row i, column j) open?
validateIJ(i, j);
return openSite[xyTo1D(i, j)];
} /*A full site is an open site that can be connected to an open site in the top row
* via a chain of neighboring (left, right, up, down) open sites.
*/
public boolean isFull(int i, int j) { // is site (row i, column j) full?
validateIJ(i, j);
return ufNoBottom.connected(top, xyTo1D(i, j));
} /* Introduce 2 virtual sites (and connections to top and bottom).
* Percolates iff virtual top site is connected to virtual bottom site.
*/
public boolean percolates() { // does the system percolate?
return uf.connected(top, bottom);
} public static void main(String[] args) { // test client (optional)
}
}
3. 最佳方法,增加flag, 只使用1个WQUUF
//use one WQUUF to avoid backwash
import edu.princeton.cs.algs4.WeightedQuickUnionUF; public class Percolation {
private boolean[] open; //blocked: false, open: true
private boolean[] connectTop;
private boolean[] connectBottom;
private int N; //create N-by-N grid
private WeightedQuickUnionUF uf;
private boolean percolateFlag; public Percolation(int N) { // create N-by-N grid, with all sites blocked
if (N <= 0) {
throw new IllegalArgumentException("N must be bigger than 0");
}
this.N = N;
uf = new WeightedQuickUnionUF(N*N);
open = new boolean[N*N];
connectTop = new boolean[N*N];
connectBottom = new boolean[N*N]; for (int i = 0; i < N*N; i++) {
open[i] = false;
connectTop[i] = false;
connectBottom[i] = false;
}
percolateFlag = false;
} public void open(int i, int j) { // open site (row i, column j) if it is not open already
validateIJ(i, j);
int index = xyTo1D(i, j);
open[index] = true; //open
boolean top = false;
boolean bottom = false; if (i < N && open[index+N]) {
if (connectTop[uf.find(index+N)] || connectTop[uf.find(index)] ) {
top = true;
}
if (connectBottom[uf.find(index+N)] || connectBottom[uf.find(index)] ) {
bottom = true;
}
uf.union(index, index+N);
}
if (i > 1 && open[index-N]) {
if (connectTop[uf.find(index-N)] || connectTop[uf.find(index)] ) {
top = true;
}
if (connectBottom[uf.find(index-N)] || connectBottom[uf.find(index)] ) {
bottom = true;
}
uf.union(index, index-N);
}
if (j < N && open[index+1]) {
if (connectTop[uf.find(index+1)] || connectTop[uf.find(index)] ) {
top = true;
}
if (connectBottom[uf.find(index+1)] || connectBottom[uf.find(index)] ) {
bottom = true;
}
uf.union(index, index+1);
}
if (j > 1 && open[index-1]) {
if (connectTop[uf.find(index-1)] || connectTop[uf.find(index)] ) {
top = true;
}
if (connectBottom[uf.find(index-1)] || connectBottom[uf.find(index)] ) {
bottom = true;
}
uf.union(index, index-1);
}
if(i == 1) {
top = true;
}
if(i == N){
bottom = true;
}
connectTop[uf.find(index)] = top;
connectBottom[uf.find(index)] = bottom;
if( connectTop[uf.find(index)] && connectBottom[uf.find(index)]) {
percolateFlag = true;
}
} private int xyTo1D(int i, int j) {
validateIJ(i, j);
return j + (i-1) * N -1;
} private void validateIJ(int i, int j) {
if (!(i >= 1 && i <= N && j >= 1 && j <= N)) {
throw new IndexOutOfBoundsException("Index is not betwwen 1 and N");
}
} public boolean isOpen(int i, int j) { // is site (row i, column j) open?
validateIJ(i, j);
return open[xyTo1D(i, j)];
} /*A full site is an open site that can be connected to an open site in the top row
* via a chain of neighboring (left, right, up, down) open sites.
*/
public boolean isFull(int i, int j) { // is site (row i, column j) full?
validateIJ(i, j);
return connectTop[uf.find(xyTo1D(i, j))];
} /* Introduce 2 virtual sites (and connections to top and bottom).
* Percolates iff virtual top site is connected to virtual bottom site.
*/
public boolean percolates() { // does the system percolate?
return percolateFlag;
} public static void main(String[] args) { // test client (optional)
}
}
Reference:
1. http://tech-wonderland.net/blog/avoid-backwash-in-percolation.html
AlgorithmsI Programming Assignment 1: Percolation的更多相关文章
- Programming Assignment 1: Percolation
问题描述可以详见:http://coursera.cs.princeton.edu/algs4/assignments/percolation.html 关于QuickFindUF的javadoc:h ...
- AlgorithmsI Programming Assignment 1: PercolationStats.java
import edu.princeton.cs.algs4.StdOut; import edu.princeton.cs.algs4.StdRandom; import edu.princeton. ...
- Coursera Algorithms Programming Assignment 1: Percolation(100分)
题目来源http://coursera.cs.princeton.edu/algs4/assignments/percolation.html 作业分为两部分:建立模型和仿真实验. 最关键的部分就是建 ...
- 课程一(Neural Networks and Deep Learning),第三周(Shallow neural networks)—— 3.Programming Assignment : Planar data classification with a hidden layer
Planar data classification with a hidden layer Welcome to the second programming exercise of the dee ...
- Algorithms: Design and Analysis, Part 1 - Programming Assignment #1
自我总结: 1.编程的思维不够,虽然分析有哪些需要的函数,但是不能比较好的汇总整合 2.写代码能力,容易挫败感,经常有bug,很烦心,耐心不够好 题目: In this programming ass ...
- Algorithms : Programming Assignment 3: Pattern Recognition
Programming Assignment 3: Pattern Recognition 1.题目重述 原题目:Programming Assignment 3: Pattern Recogniti ...
- Programming Assignment 2: Randomized Queues and Deques
实现一个泛型的双端队列和随机化队列,用数组和链表的方式实现基本数据结构,主要介绍了泛型和迭代器. Dequeue. 实现一个双端队列,它是栈和队列的升级版,支持首尾两端的插入和删除.Deque的API ...
- 课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 2、编程作业常见问题与答案(Programming Assignment FAQ)
Please note that when you are working on the programming exercise you will find comments that say &q ...
- Programming Assignment 5: Kd-Trees
用2d-tree数据结构实现在2维矩形区域内的高效的range search 和 nearest neighbor search.2d-tree有许多的应用,在天体分类.计算机动画.神经网络加速.数据 ...
随机推荐
- iOS View的Frame和bounds之区别,setbounds使用(深入探究)
前言: 在ios开发中经常遇到两个词Frame和bounds,本文主要阐述Frame和bound的区别,尤其是bound很绕,较难理解. 一.首先,看一下公认的资料: 先看到下面的代码你肯定就明白了一 ...
- URLConnection类详解
为了防止无良网站的爬虫抓取文章,特此标识,转载请注明文章出处.LaplaceDemon/SJQ. http://www.cnblogs.com/shijiaqi1066/p/3753224.html ...
- Java多线程编程<一>
怎样做到线程安全? 1.不要跨线程共享变量: 2.使状态变量为不可变的: 3.或者在任何访问状态变量的时候使用同步 同步synchronized //静态的synchronized方法从Class对象 ...
- Date和TimeZone的关系
java2平台为我们提供了丰富的日期时间API.如java.util.Date;java.util.calendar;java.text.DateFormat等.那么它们之间有什么关系呢? 首先,ja ...
- Gprinter Android SDK V1.0 使用说明
佳博打印机代理商淘宝店https://shop107172033.taobao.com/index.htm?spm=2013.1.w5002-9520741823.2.Sqz8Pf 在此店购买的打印机 ...
- 常用CDN公共库
Jquery <script src="http://lib.sinaapp.com/js/jquery/1.7.2/jquery.min.js"></scrip ...
- linq学习笔记:将List<T> 转换为 Dictionary<T Key,T Value>
运用Linq,将List<T> 转换为 Dictionary<T Key,T Value> 即:List<T> ToDictionary<T Key,T V ...
- SQL Server Management Studio的对象资源管理器的使用
1.查看 2.对象资源管理器 3.点到某个表的身上 4.出现以下图片,因为有时动态创建的触发器,刷新表下面的触发器可能不出来,所以来这里面找
- .net excel利用NPOI导入oracle
1.链接数据库 引用System.Data.OracleClient: //数据库链接字符串 Data Source如:192.168.5.153:1521/orcl string linkStr ...
- HTML meta标签总结与属性使用介绍
之前学习前端中,对meta标签的了解仅仅只是这一句. <meta charset="UTF-8"> 但是打开任意的网站,其head标签内都有一列的meta标签.比如我博 ...