3156: 防御准备

Time Limit: 10 Sec  Memory Limit: 512 MB
Submit: 837  Solved: 395
[Submit][Status][Discuss]

Description

 

Input

第一行为一个整数N表示战线的总长度。

第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai。

Output

共一个整数,表示最小的战线花费值。

Sample Input

10
2 3 1 5 4 5 6 3 1 2

Sample Output

18

HINT

1<=N<=10^6,1<=Ai<=10^9

Source

【思路】

斜率优化DP。

唯一需要注意的是过程中数据超范围,需要特别声明一下。

  为毛斜率DP都长一个样<_<

【代码1】

 #include<cstdio>
#include<iostream>
using namespace std; typedef long long LL;
const int N = 1e6+;
struct point { LL x,y;
}q[N],now;
int n,L,R,a[N]; LL cross(point a,point b,point c) {
return (b.x-a.x)*(c.y-a.y)-(b.y-a.y)*(c.x-a.x);
}
void read(int& x) {
char c=getchar(); while(!isdigit(c)) c=getchar();
x=; while(isdigit(c)) x=x*+c-'' , c=getchar();
}
int main() {
//freopen("in.in","r",stdin);
//freopen("out.out","w",stdout);
read(n);
for(int i=;i<=n;i++) read(a[i]);
for(int i=;i<=n;i++) {
while(L<R && q[L].y-q[L].x*i >= q[L+].y-q[L+].x*i) L++;
now.x=i;
now.y=q[L].y-(LL)q[L].x*i+(LL)i*i+a[i];
while(L<R && cross(q[R-],q[R],now)<=) R--;
q[++R]=now;
}
printf("%lld",q[R].y-(LL)n*(n+)/); // (LL) n*(n+1)/2
return ;
}

Folding 1

【代码2】

 #include<cstdio>
#include<cstring>
#include<iostream>
using namespace std; typedef long long LL;
const int N = 1e6+; int n,L,R,a[N],q[N]; LL f[N]; double slop(int k,int j) {
return (double)(f[j]-f[k]+(LL)j*(j+)/-(LL)k*(k+)/)/(j-k);
}
void read(int& x) {
char c=getchar(); while(!isdigit(c)) c=getchar();
x=; while(isdigit(c)) x=x*+c-'' , c=getchar();
}
int main() {
//freopen("in.in","r",stdin);
//freopen("out.out","w",stdout);
read(n);
for(int i=;i<=n;i++) read(a[i]);
for(int i=;i<=n;i++) {
while(L<R && slop(q[L],q[L+])<i) L++;
int t=q[L];
f[i]=f[t]+(LL)i*(i-t)+(LL)t*(t+)/-(LL)i*(i+)/+a[i];
while(L<R && slop(q[R-],q[R])>slop(q[R],i)) R--;
q[++R]=i;
}
printf("%lld",f[n]);
return ;
}

Folding 2

bzoj 3156 防御准备(斜率DP)的更多相关文章

  1. BZOJ 3156: 防御准备 斜率优化DP

    3156: 防御准备 Description   Input 第一行为一个整数N表示战线的总长度. 第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai. Output 共一个整数,表示最小的战 ...

  2. BZOJ 3156: 防御准备( dp + 斜率优化 )

    dp(i)表示处理完[i,n]且i是放守卫塔的最小费用. dp(i) = min{dp(j) + (j-i)(j-i-1)/2}+costi(i<j≤N) 然后斜率优化 ------------ ...

  3. bzoj 3156: 防御准备【斜率优化dp】

    就是套路咯,设s[i]为1+2+...i 首先列出dp方程\( f[i]=min(f[j]+a[i]+(i-j)*i-(s[i]-s[j])) \) 然后推一推 \[ f[i]=f[j]+a[i]+( ...

  4. BZOJ 3156 防御准备

    也是斜率优化....推下式子就好了. #include<iostream> #include<cstdio> #include<cstring> #include& ...

  5. bzoj3156防御准备 斜率优化dp

    3156: 防御准备 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 2279  Solved: 959[Submit][Status][Discuss ...

  6. bzoj 1597 斜率DP

    1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 5115  Solved: 1897[Submit] ...

  7. bzoj4518: [Sdoi2016]征途--斜率DP

    题目大意:把一个数列分成m段,计算每段的和sum,求所有的sum的方差,使其最小. 由方差*m可以化简得ans=m*sigma(ki^2)-sum[n]^2 很容易得出f[i][j]=min{f[i- ...

  8. hdu 3507 斜率dp

    不好理解,先多做几个再看 此题是很基础的斜率DP的入门题. 题意很清楚,就是输出序列a[n],每连续输出的费用是连续输出的数字和的平方加上常数M 让我们求这个费用的最小值. 设dp[i]表示输出前i个 ...

  9. 斜率dp cdq 分治

    f[i] = min { f[j] + sqr(a[i] - a[j]) } f[i]= min { -2 * a[i] * a[j] + a[j] * a[j] + f[j] } + a[i] * ...

随机推荐

  1. 《你不常用的c#之一》:略谈unsafe

    转自csdn:http://blog.csdn.net/robingaoxb/article/details/6199508 msdn里讲到: “在 C# 中很少需要使用指针,但仍有一些需要使用的情况 ...

  2. 在Android上模拟登录广工正方教务系统查询成绩

    这是在博客园里开博以来写的第一篇博客. 因为之前看过很多人都有发过关于模拟登录正方软件获取数据的文章,自己觉得挺好玩的便也去动手一做,开始还以为挺难的,但实际做起来还蛮简单的,当然其中还有些小插曲. ...

  3. the account is currently locked out. The system administrator can unlock it.

    今天遇到的问题比较有意思.首先是很久没有打开测试数据库了,今天打开,使用service程序测试的时候出现下面的错误提示:Message: System.Data.SqlClient.SqlExcept ...

  4. MyBatis的学习总结五:调用存储过程【参考】

    一.创建存储过程 存储过程的目的:统计edi_test_task 正在运行的任务和非运行的任务 CREATE DEFINER=`root`@`%` PROCEDURE `edihelper`.`SP_ ...

  5. 解决IE无法解析json的方法

    一.原始方法eval() 二.json插件--github开源插件:json-js/json2.js https://github.com/douglascrockford/JSON-js/blob/ ...

  6. SQL Server T-SQL高级查询【转】

    高级查询在数据库中用得是最频繁的,也是应用最广泛的. Ø 基本常用查询 --select select * from student;   --all 查询所有 select all sex from ...

  7. Twisted介绍

    Twisted诞生于2000年初,作者为Glyph,目的是为了开发网络游戏. Twisted的历史 Glyph开始采用Java多线程,来开发Twisted Reality,结果多线程使得开发变得复杂, ...

  8. 生产者与消费者(二)---await与 signal

    前面阐述了实现生产者与消费者问题的一种方式:wait() / notify()方法,本文继续阐述多线程的经典问题---生产者与消费者的第二种方式:await() / signal()方法. await ...

  9. linux系统 web在线日志分析

    线上环境出现问题时,不能像本地环境一样,断点查找问题,只有根据日志分析来定位问题,当然有资深的经验也是可以的,哈哈. 最基本的就是cat命令,可以通过cat filename,来查看文件全部内容, & ...

  10. InfoPath本地发布及部署

    前言 最近在接触SharePoint项目,第一次接触,总感觉有些不适应.以前只是听过,现在要遇见了,有些小紧张.今天改了一下表单的东西,也是对sharepoint的慢慢熟悉过程,分享给初学,或者未学者 ...