groupByKey,reduceByKey,sortByKey算子

视频教程:

1、优酷

2、 YouTube

1、groupByKey

groupByKey是对每个key进行合并操作,但只生成一个sequence,groupByKey本身不能自定义操作函数。

java:

 package com.bean.spark.trans;

 import java.util.Arrays;
import java.util.List; import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaSparkContext; import scala.Tuple2; public class TraGroupByKey {
public static void main(String[] args) {
SparkConf conf = new SparkConf();
conf.setMaster("local");
conf.setAppName("union");
System.setProperty("hadoop.home.dir", "D:/tools/spark-2.0.0-bin-hadoop2.6");
JavaSparkContext sc = new JavaSparkContext(conf);
List<Tuple2<String, Integer>> list = Arrays.asList(new Tuple2<String, Integer>("cl1", 90),
new Tuple2<String, Integer>("cl2", 91),new Tuple2<String, Integer>("cl3", 97),
new Tuple2<String, Integer>("cl1", 96),new Tuple2<String, Integer>("cl1", 89),
new Tuple2<String, Integer>("cl3", 90),new Tuple2<String, Integer>("cl2", 60));
JavaPairRDD<String, Integer> listRDD = sc.parallelizePairs(list);
JavaPairRDD<String, Iterable<Integer>> results = listRDD.groupByKey();
System.out.println(results.collect());
sc.close();
}
}

python:

 # -*- coding:utf-8 -*-

 from pyspark import SparkConf
from pyspark import SparkContext
import os if __name__ == '__main__':
os.environ["SPARK_HOME"] = "D:/tools/spark-2.0.0-bin-hadoop2.6"
conf = SparkConf().setMaster('local').setAppName('group')
sc = SparkContext(conf=conf)
data = [('tom',90),('jerry',97),('luck',92),('tom',78),('luck',64),('jerry',50)]
rdd = sc.parallelize(data)
print rdd.groupByKey().map(lambda x: (x[0],list(x[1]))).collect()

注意:当采用groupByKey时,由于它不接收函数,spark只能先将所有的键值对都移动,这样的后果是集群节点之间的开销很大,导致传输延时。

整个过程如下:

因此,在对大数据进行复杂计算时,reduceByKey优于groupByKey。

另外,如果仅仅是group处理,那么以下函数应该优先于 groupByKey :

(1)、combineByKey 组合数据,但是组合之后的数据类型与输入时值的类型不一样。

(2)、foldByKey合并每一个 key 的所有值,在级联函数和“零值”中使用。

2、reduceByKey

对数据集key相同的值,都被使用指定的reduce函数聚合到一起。

java:

 package com.bean.spark.trans;

 import java.util.Arrays;
import java.util.List; import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function2; import scala.Tuple2; public class TraReduceByKey {
public static void main(String[] args) {
SparkConf conf = new SparkConf();
conf.setMaster("local");
conf.setAppName("reduce");
System.setProperty("hadoop.home.dir", "D:/tools/spark-2.0.0-bin-hadoop2.6");
JavaSparkContext sc = new JavaSparkContext(conf);
List<Tuple2<String, Integer>> list = Arrays.asList(new Tuple2<String, Integer>("cl1", 90),
new Tuple2<String, Integer>("cl2", 91),new Tuple2<String, Integer>("cl3", 97),
new Tuple2<String, Integer>("cl1", 96),new Tuple2<String, Integer>("cl1", 89),
new Tuple2<String, Integer>("cl3", 90),new Tuple2<String, Integer>("cl2", 60));
JavaPairRDD<String, Integer> listRDD = sc.parallelizePairs(list);
JavaPairRDD<String, Integer> results = listRDD.reduceByKey(new Function2<Integer, Integer, Integer>() {
@Override
public Integer call(Integer s1, Integer s2) throws Exception {
// TODO Auto-generated method stub
return s1 + s2;
}
});
System.out.println(results.collect());
sc.close();
}
}

python:

 # -*- coding:utf-8 -*-

 from pyspark import SparkConf
from pyspark import SparkContext
import os
from operator import add
if __name__ == '__main__':
os.environ["SPARK_HOME"] = "D:/tools/spark-2.0.0-bin-hadoop2.6"
conf = SparkConf().setMaster('local').setAppName('reduce')
sc = SparkContext(conf=conf)
data = [('tom',90),('jerry',97),('luck',92),('tom',78),('luck',64),('jerry',50)]
rdd = sc.parallelize(data)
print rdd.reduceByKey(add).collect()
sc.close()

当采用reduceByKey时,Spark可以在每个分区移动数据之前将待输出数据与一个共用的key结合。 注意在数据对被搬移前同一机器上同样的key是怎样被组合的。

3、sortByKey

通过key进行排序。

java:

 package com.bean.spark.trans;

 import java.util.Arrays;
import java.util.List; import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaSparkContext; import scala.Tuple2; public class TraSortByKey {
public static void main(String[] args) {
SparkConf conf = new SparkConf();
conf.setMaster("local");
conf.setAppName("sort");
System.setProperty("hadoop.home.dir", "D:/tools/spark-2.0.0-bin-hadoop2.6");
JavaSparkContext sc = new JavaSparkContext(conf);
List<Tuple2<Integer, String>> list = Arrays.asList(new Tuple2<Integer,String>(3,"Tom"),
new Tuple2<Integer,String>(2,"Jerry"),new Tuple2<Integer,String>(5,"Luck")
,new Tuple2<Integer,String>(1,"Spark"),new Tuple2<Integer,String>(4,"Storm"));
JavaPairRDD<Integer,String> rdd = sc.parallelizePairs(list);
JavaPairRDD<Integer, String> results = rdd.sortByKey(false);
System.out.println(results.collect());
sc.close()
}
}

python:

 #-*- coding:utf-8 -*-
if __name__ == '__main__':
os.environ["SPARK_HOME"] = "D:/tools/spark-2.0.0-bin-hadoop2.6"
conf = SparkConf().setMaster('local').setAppName('reduce')
sc = SparkContext(conf=conf)
data = [(5,90),(1,92),(3,50)]
rdd = sc.parallelize(data)
print rdd.sortByKey(False).collect()
sc.close()

(九)groupByKey,reduceByKey,sortByKey算子-Java&Python版Spark的更多相关文章

  1. (八)map,filter,flatMap算子-Java&Python版Spark

    map,filter,flatMap算子 视频教程: 1.优酷 2.YouTube 1.map map是将源JavaRDD的一个一个元素的传入call方法,并经过算法后一个一个的返回从而生成一个新的J ...

  2. (四)Spark集群搭建-Java&Python版Spark

    Spark集群搭建 视频教程 1.优酷 2.YouTube 安装scala环境 下载地址http://www.scala-lang.org/download/ 上传scala-2.10.5.tgz到m ...

  3. (七)Transformation和action详解-Java&Python版Spark

    Transformation和action详解 视频教程: 1.优酷 2.YouTube 什么是算子 算子是RDD中定义的函数,可以对RDD中的数据进行转换和操作. 算子分类: 具体: 1.Value ...

  4. (一)Spark简介-Java&Python版Spark

    Spark简介 视频教程: 1.优酷 2.YouTube 简介: Spark是加州大学伯克利分校AMP实验室,开发的通用内存并行计算框架.Spark在2013年6月进入Apache成为孵化项目,8个月 ...

  5. (二)Spark-Linux环境准备-Java&Python版Spark

    Spark-Linux环境准备 视频教程: 1.优酷 2.YouTube 硬软件环境 1.虚拟机:VMware Workstation 12 2.虚拟机操作系统:RedHat5u4,单核,1G内存,2 ...

  6. (三)Spark-Hadoop集群搭建-Java&Python版Spark

    Spark-Hadoop集群搭建 视频教程: 1.优酷 2.YouTube 配置java 启动ftp [root@master ~]# /etc/init.d/vsftpd restart 关闭 vs ...

  7. (六)Spark-Eclipse开发环境WordCount-Java&Python版Spark

    Spark-Eclipse开发环境WordCount 视频教程: 1.优酷 2.YouTube 安装eclipse 解压eclipse-jee-mars-2-win32-x86_64.zip Java ...

  8. (五)什么是RDD-Java&Python版Spark

    什么是RDD 视频教程: 1.优酷 2.YouTube RDD是个抽象类,全称为Resilient Distributed Datasets,是一个容错的.并行的数据结构,可以让用户显式地将数据存储到 ...

  9. [Python+Java双语版自动化测试(接口测试+Web+App+性能+CICD)

    [Python+Java双语版自动化测试(接口测试+Web+App+性能+CICD)开学典礼](https://ke.qq.com/course/453802)**测试交流群:549376944**0 ...

随机推荐

  1. webstrom热键[持续更新]

    1.Ctrl+ Shift + A  --  为了加快寻找菜单命令或工具栏操作,你并不需要看菜单.只有按Ctrl+ Shift + A(说明|查找操作主菜单上),并开始输入动作的名称. . 2.Ctr ...

  2. 常用加密算法的Java实现(一) ——单向加密算法MD5和SHA

    1.Java的安全体系架构 1.1           Java的安全体系架构介绍 Java中为安全框架提供类和接口.JDK 安全 API 是 Java 编程语言的核心 API,位于 java.sec ...

  3. velocity-字母序号 list

    版权声明:本文为博主原创文章,未经博主允许不得转载. [需求] 遍历一个list,同时需要在每个item前面显示字母序号,例如A,B,C,D [代码] #set($zimu = ["A&qu ...

  4. ubuntu卸载qq2012

    xianbin@xianbin-ThinkPad-E520:~$ sudo dpkg --purge wine-qq2012-longeneteam [sudo] password for xianb ...

  5. [译]信仰是怎样毁掉程序猿的How religion destroys programmers

    作者原文地址 作者John Sonmez 英文水平不够高,翻译不太准确. 翻译地址:译文 尽管文章是13年的,可是这段时间恰好看到.net开源核心之后,各种java和.net掐架. 语言之争有些牵涉到 ...

  6. css 常见兼容性问题及解决方案

    css 兼容问题一直是困扰前端开发人员的大难题,提到兼容性立马想到了万恶的ie6,说多了都是泪,还是整理一些常见的兼容性问题以及解决的方案吧. 一. 浮动元素双边距. ①条件:ie6下,如果给元素设置 ...

  7. iOS中使用nil NULL NSNULL的区别

    nil NULL NSNULL的区别主要以下几点 1.nil:一般赋值给空对象 2.NLL:一般赋值给nil之外的其他空值.入SEL等. 3.NSULL:NSNULL只有一种方法+ (NSNull * ...

  8. centos 下安装ati显卡驱动方法

    1)到ati的官网(http://support.amd.com/us/gpudownload/Pages/index.aspx)下载相应的驱动,一定要注意 radeon系列和mobility rad ...

  9. 混合文件系统(ramdisk+jffs)

    背景知识: 一.Ramdisk文件系统: 1.掉电丢失 2.读写速度高 3.数据存储到内存 二.jffs文件系统 1.掉电不丢失 2.可存储于NOR NAND,但是适用于NOR 3.数据存储于flas ...

  10. .net+easyui--combobox

    一:预定义结构的 select 元素创建组合框(combobox)值固定写死 <select class="easyui-combobox" name="state ...