Codeforces Round #236 (Div. 2)
A. Nuts
time limit per test:1 second
memory limit per test:256 megabytes
input:standard input
output:standard output
You have a nuts and lots of boxes. The boxes have a wonderful feature: if you put x (x ≥ 0) divisors (the spacial bars that can divide a box) to it, you get a box, divided into x + 1 sections.
You are minimalist. Therefore, on the one hand, you are against dividing some box into more than k sections. On the other hand, you are against putting more than v nuts into some section of the box. What is the minimum number of boxes you have to use if you want to put all the nuts in boxes, and you have b divisors?
Please note that you need to minimize the number of used boxes, not sections. You do not have to minimize the number of used divisors.
The first line contains four space-separated integers k, a, b, v (2 ≤ k ≤ 1000; 1 ≤ a, b, v ≤ 1000) — the maximum number of sections in the box, the number of nuts, the number of divisors and the capacity of each section of the box.
Print a single integer — the answer to the problem.
3 10 3 3
2
3 10 1 3
3
100 100 1 1000
1
In the first sample you can act like this:
- Put two divisors to the first box. Now the first box has three sections and we can put three nuts into each section. Overall, the first box will have nine nuts.
- Do not put any divisors into the second box. Thus, the second box has one section for the last nut.
In the end we've put all the ten nuts into boxes.
The second sample is different as we have exactly one divisor and we put it to the first box. The next two boxes will have one section each.
题意:给你四个数字,k,a,b,v,分别代表着一个盒子最大的section,nut的数量,板的数量,每个section能容纳的最多的nut的数量。让你求出最少可以用几个盒子来装
思路:这个比赛的时候想复杂了,结果就悲剧了。。。。。我分了好多种情况,实际上我分的那些情况如果真拿出来的话能写成很多不同的方法A了这道题T_T。。。。。主要注意一下别让nut的数量小于0还有挡板的数量也要注意
#include <iostream>
#include <stdio.h> using namespace std; int main()
{
int k ,a,b,v ;
while(~scanf("%d %d %d %d",&k,&a,&b,&v))
{
int ans = ;
int temp = (a-)/v+ ;
while(a > )
{
b++ ;
for(int i = ; i <= k && b ; i++)
{
a -= v ;
b -= ;
}
ans++ ;
}
printf("%d\n",ans) ;
}
return ;
}
#include<stdio.h> int main()
{
int k,a,b,v;
scanf("%d %d %d %d",&k,&a,&b,&v);
int temp = (a-)/v+;//求出放下所有的nut需要多少section
printf("%d\n",max((temp-)/k+,temp-b));//因为结果受制于板的数量和盒子所能容纳的section的数量
return ;
}
B. Trees in a Row
time limit per test: 1 second
256 megabytes
standard input
standard output
The Queen of England has n trees growing in a row in her garden. At that, the i-th (1 ≤ i ≤ n) tree from the left has height ai meters. Today the Queen decided to update the scenery of her garden. She wants the trees' heights to meet the condition: for all i (1 ≤ i < n),ai + 1 - ai = k, where k is the number the Queen chose.
Unfortunately, the royal gardener is not a machine and he cannot fulfill the desire of the Queen instantly! In one minute, the gardener can either decrease the height of a tree to any positive integer height or increase the height of a tree to any positive integer height. How should the royal gardener act to fulfill a whim of Her Majesty in the minimum number of minutes?
The first line contains two space-separated integers: n, k (1 ≤ n, k ≤ 1000). The second line contains n space-separated integersa1, a2, ..., an (1 ≤ ai ≤ 1000) — the heights of the trees in the row.
In the first line print a single integer p — the minimum number of minutes the gardener needs. In the next p lines print the description of his actions.
If the gardener needs to increase the height of the j-th (1 ≤ j ≤ n) tree from the left by x (x ≥ 1) meters, then print in the corresponding line "+ j x". If the gardener needs to decrease the height of the j-th (1 ≤ j ≤ n) tree from the left by x (x ≥ 1) meters, print on the corresponding line "- j x".
If there are multiple ways to make a row of trees beautiful in the minimum number of actions, you are allowed to print any of them.
4 1
1 2 1 5
2
+ 3 2
- 4 1
4 1
1 2 3 4
0
#include <stdio.h>
#include <string.h>
#include <iostream> using namespace std ; int a[],b[] ;
int main()
{
int n,k ; while(~scanf("%d %d",&n,&k))
{
int j = ;
memset(b,,sizeof(b)) ;
memset(a,,sizeof(a)) ;
for(int i = ; i < n ; i++)
{
scanf("%d",&a[i]) ;
if(a[i]-i*k > )
b[a[i]-i*k]++ ;
}
for(int i = ; i < ; i++)
if(b[i] > b[j]) j = i ;
printf("%d\n",n-b[j]) ;
for(int i = ; i < n ; i++)
{
if(j != a[i])
{
if(j > a[i])
printf("+ %d %d\n",i+,j-a[i]) ;
else if(j < a[i])
printf("- %d %d\n",i+,a[i]-j) ;
}
j += k ;
}
}
return ;
}
C. Searching for Graph
time limit per test:1 second
memory limit per test:256 megabytes
input:standard input
output:standard output
Let's call an undirected graph of n vertices p-interesting, if the following conditions fulfill:
- the graph contains exactly 2n + p edges;
- the graph doesn't contain self-loops and multiple edges;
- for any integer k (1 ≤ k ≤ n), any subgraph consisting of k vertices contains at most 2k + p edges.
A subgraph of a graph is some set of the graph vertices and some set of the graph edges. At that, the set of edges must meet the condition: both ends of each edge from the set must belong to the chosen set of vertices.
Your task is to find a p-interesting graph consisting of n vertices.
The first line contains a single integer t (1 ≤ t ≤ 5) — the number of tests in the input. Next t lines each contains two space-separated integers: n, p (5 ≤ n ≤ 24; p ≥ 0;
) — the number of vertices in the graph and the interest value for the appropriate test.
It is guaranteed that the required graph exists.
For each of the t tests print 2n + p lines containing the description of the edges of a p-interesting graph: the i-th line must contain two space-separated integers ai, bi (1 ≤ ai, bi ≤ n; ai ≠ bi) — two vertices, connected by an edge in the resulting graph. Consider the graph vertices numbered with integers from 1 to n.
Print the answers to the tests in the order the tests occur in the input. If there are multiple solutions, you can print any of them.
1
6 0
1 2
1 3
1 4
1 5
1 6
2 3
2 4
2 5
2 6
3 4
3 5
3 6
#include <stdio.h>
int main()
{
int T ;
int n, p;
scanf("%d",&T) ;
while(T--)
{
scanf("%d %d",&n,&p) ;
int cnt = ;
for(int i = ; i <= n ; i++)
{
if(cnt == *n+p)
break ;
for(int j = i+ ; j <= n ; j++)
{ printf("%d %d\n",i,j) ;
cnt++ ;
if(cnt == *n+p)
break ;
}
}
}
return ;
}
Codeforces Round #236 (Div. 2)的更多相关文章
- 构造图 Codeforces Round #236 (Div. 2) C. Searching for Graph
题目地址 /* 题意:要你构造一个有2n+p条边的图,使得,每一个含k个结点子图中,最多有2*k+p条边 水得可以啊,每个点向另外的点连通,只要不和自己连,不重边就可以,正好2*n+p就结束:) */ ...
- 贪心 Codeforces Round #236 (Div. 2) A. Nuts
题目传送门 /* 贪心:每一次选取最多的线段,最大能放置nuts,直到放完为止,很贪婪! 题目读不懂多读几遍:) */ #include <cstdio> #include <alg ...
- Codeforces Round #236 (Div. 2) C. Searching for Graph(水构造)
题目大意 我们说一个无向图是 p-interesting 当且仅当这个无向图满足如下条件: 1. 该图恰有 2 * n + p 条边 2. 该图没有自环和重边 3. 该图的任意一个包含 k 个节点的子 ...
- Codeforces Round #236 (Div. 2)E. Strictly Positive Matrix(402E)
E. Strictly Positive Matrix You have matrix a of size n × n. Let's number the rows of the matrix f ...
- Codeforces Round #366 (Div. 2) ABC
Codeforces Round #366 (Div. 2) A I hate that I love that I hate it水题 #I hate that I love that I hate ...
- Codeforces Round #354 (Div. 2) ABCD
Codeforces Round #354 (Div. 2) Problems # Name A Nicholas and Permutation standard input/out ...
- Codeforces Round #368 (Div. 2)
直达–>Codeforces Round #368 (Div. 2) A Brain’s Photos 给你一个NxM的矩阵,一个字母代表一种颜色,如果有”C”,”M”,”Y”三种中任意一种就输 ...
- cf之路,1,Codeforces Round #345 (Div. 2)
cf之路,1,Codeforces Round #345 (Div. 2) ps:昨天第一次参加cf比赛,比赛之前为了熟悉下cf比赛题目的难度.所以做了round#345连试试水的深浅..... ...
- Codeforces Round #279 (Div. 2) ABCDE
Codeforces Round #279 (Div. 2) 做得我都变绿了! Problems # Name A Team Olympiad standard input/outpu ...
随机推荐
- windows server 2012R2 网络慢的那些事
前段时间公司新采购了一台ibm的服务器,装的是 windows server 2012R2, 在做完项目迁移后,发现项目访问数据库缓慢,于是逐项查找原因,最后终于找到解决办法 以Administrat ...
- JavaScript类型检测, typeof操作符与constructor属性的异同
*#type.js function Person(name, age) { this.name = name; this.age = age; } var d = {an: 'object'}; v ...
- scala学习笔记:match与unapply()
编写如下代码: object MatchTest { def foo(a : Any) : String = { a match { case 1 => "int:1" ca ...
- Mongodb集群节点故障恢复场景分析
http://blog.csdn.net/zhangzhaokun/article/details/6299527 一个适当配置的Mongodb分片集群是没有单点故障. 本文描述了分片集群中存在的几种 ...
- C#学习笔记9:C#中的变量、转义符、显式转换和隐式转换
1.变量的特性:可以重复的赋值 int a=4; a=9; 2.常量:const int number=10:这个常量不可变 如果你声明的变量,不想被其他人修改,那么就修饰为常量 声明在类的下面, ...
- namenode无法自动切换的问题
主namenode 为standly状态,备namenode为active,kill备namenode,主namenode能正常切换为active.但是主namenode为active,备nameno ...
- HW--自守数
package testcase; import huawei.Demo; import junit.framework.TestCase;//加入测试框架,不需要写Main函数 public cla ...
- java异常练习2
/*有一个圆形和长方形都可以获取面积,对于面积,如果出现非法数值,视为获取面积出现问题问题通过异常来表示.先要对这个程序进行基本的设置 *//*首先想一下,怎么写这个程序基本属性是肯定要的求面积呢?1 ...
- ubuntu16.04无法连接无线的问题解决方式以及QQ的安装
0x01 首先我是安装了win10与ubuntu16.04的双系统,不过遇到的问题有启动项与无线连接的问题,今天说一下联网的问题. 连接宽带是正常的,只需要操作sudo pppoeconf 这条命令即 ...
- 模板:qsort+bsearch应用
(1)qsort: 功 能: 使用快速排序例程进行排序 头文件:stdlib.h 用 法: void qsort(void *base,int nelem,int width,int (*fcmp)( ...