几大最短路径算法比较(Floyd & Dijkstra & Bellman-Ford & SPFA)
几个最短路径算法的比较:
Floyd
求多源、无负权边(此处错误?应该可以有负权边)的最短路。用矩阵记录图。时效性较差,时间复杂度O(V^3)。
Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题。
Floyd-Warshall算法的时间复杂度为O(N^3),空间复杂度为O(N^2)。
Floyd-Warshall的原理是动态规划:
设Di,j,k为从i到j的只以(1..k)集合中的节点为中间节点的最短路径的长度。
若最短路径经过点k,则Di,j,k = Di,k,k-1 + Dk,j,k-1;
若最短路径不经过点k,则Di,j,k = Di,j,k-1。
因此,Di,j,k = min(Di,k,k-1 + Dk,j,k-1 , Di,j,k-1)。
在实际算法中,为了节约空间,可以直接在原来空间上进行迭代,这样空间可降至二维。
Floyd-Warshall算法的描述如下:
for k ← 1 to n do
for i ← 1 to n do
for j ← 1 to n do
if (Di,k + Dk,j < Di,j) then
Di,j ← Di,k + Dk,j;
其中Di,j表示由点i到点j的代价,当Di,j为 ∞ 表示两点之间没有任何连接。
Dijkstra
求单源、无负权的最短路。时效性较好,时间复杂度为O(V*V+E)。
源点可达的话,O(V*lgV+E*lgV)=>O(E*lgV)。
当是稀疏图的情况时,此时E=V*V/lgV,所以算法的时间复杂度可为O(V^2) 。若是斐波那契堆作优先队列的话,算法时间复杂度,则为O(V*lgV + E)。
更多,请参考:二(续)、彻底理解Dijkstra算法,及二(再续)、Dijkstra 算法+fibonacci堆的逐步c实现。
注意还有个堆优化的。。。
Bellman-Ford
求单源最短路,可以判断有无负权回路(若有,则不存在最短路),
时效性较好,时间复杂度O(VE)。此算法日后还会在本BLOG内具体阐述。
Bellman-Ford算法是求解单源最短路径问题的一种算法。
单源点的最短路径问题是指:
给定一个加权有向图G和源点s,对于图G中的任意一点v,求从s到v的最短路径。
与Dijkstra算法不同的是,在Bellman-Ford算法中,边的权值可以为负数。
设想从我们可以从图中找到一个环路(即从v出发,经过若干个点之后又回到v)且这个环路中所有边的权值之和为负。那么通过这个环路,环路中任意两点的最短 路径就可以无穷小下去。如果不处理这个负环路,程序就会永远运行下去。 而Bellman-Ford算法具有分辨这种负环路的能力。
SPFA
是Bellman-Ford的队列优化,时效性相对好,时间复杂度O(kE)。(k<<V)。
与Bellman-ford算法类似,SPFA算法采用一系列的松弛操作以得到从某一个节点出发到达图中其它所有节点的最短路径。所不同的是,SPFA算法通过维护一个队列,使得一个节点的当前最短路径被更新之后没有必要立刻去更新其他的节点,从而大大减少了重复的操作次数。
SPFA算法可以用于存在负数边权的图,这与dijkstra算法是不同的。
与Dijkstra算法与Bellman-ford算法都不同,SPFA的算法时间效率是不稳定的,即它对于不同的图所需要的时间有很大的差别。
在最好情形下,每一个节点都只入队一次,则算法实际上变为广度优先遍历,其时间复杂度仅为O(E)。另一方面,存在这样的例子,使得每一个节点都被入队(V-1)次,此时算法退化为Bellman-ford算法,其时间复杂度为O(VE)。
SPFA算法在负边权图上可以完全取代Bellman-ford算法,另外在稀疏图中也表现良好。但是在非负边权图中,为了避免最坏情况的出现,通常使用 效率更加稳定的Dijkstra算法,以及它的使用堆优化的版本。通常的SPFA算法在一类网格图中的表现不尽如人意。
完。
几大最短路径算法比较(Floyd & Dijkstra & Bellman-Ford & SPFA)的更多相关文章
- 最短路径算法总结(floyd,dijkstra,bellman-ford)
继续复习数据结构和算法,总结一下求解最短路径的一些算法. 弗洛伊德(floyd)算法 弗洛伊德算法是最容易理解的最短路径算法,可以求图中任意两点间的最短距离,但时间复杂度高达\(O(n^3)\),主要 ...
- 最小生成树(prime算法 & kruskal算法)和 最短路径算法(floyd算法 & dijkstra算法)
一.主要内容: 介绍图论中两大经典问题:最小生成树问题以及最短路径问题,以及给出解决每个问题的两种不同算法. 其中最小生成树问题可参考以下题目: 题目1012:畅通工程 http://ac.jobdu ...
- 最短路径算法之二——Dijkstra算法
Dijkstra算法 Dijkstra算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止. 注意该算法要求图中不存在负权边. 首先我们来定义一个二维数组Edge[MAXN][MAXN]来存储 ...
- 单元最短路径算法模板汇总(Dijkstra, BF,SPFA),附链式前向星模板
一:dijkstra算法时间复杂度,用优先级队列优化的话,O((M+N)logN)求单源最短路径,要求所有边的权值非负.若图中出现权值为负的边,Dijkstra算法就会失效,求出的最短路径就可能是错的 ...
- 最短路径算法之一——Floyd算法
Floyd算法 Floyd算法可以用来解决任意两个顶点之间的最短路径问题. 核心公式为: Edge[i][j]=Min{Edge[i][j],Edge[i][k]+Edge[k][j]}. 即通过对i ...
- 多源最短路径算法:Floyd算法
前言 由于本人太菜,这里不讨论Floyd的正确性. 简介 多源最短路径,解决的是求从图中任意两点之间的最短路径的问题. 分析 代码短小精悍,主要代码只有四行,直接放上: for(int k=1;k&l ...
- 几个最短路径算法Floyd、Dijkstra、Bellman-Ford、SPFA的比较
几大最短路径算法比较 转自:http://blog.csdn.net/v_july_v/article/details/6181485 几个最短路径算法的比较: Floyd 求多 ...
- 几个最短路径算法Floyd、Dijkstra、Bellman-Ford、SPFA的比较(转)
几大最短路径算法比较 几个最短路径算法的比较:Floyd 求多源.无负权边(此处错误?应该可以有负权边)的最短路.用矩阵记录图.时效性较差,时间复杂度O(V^3). Floy ...
- 最短路径算法——Dijkstra,Bellman-Ford,Floyd-Warshall,Johnson
根据DSqiu的blog整理出来 :http://dsqiu.iteye.com/blog/1689163 PS:模板是自己写的,如有错误欢迎指出~ 本文内容框架: §1 Dijkstra算法 §2 ...
随机推荐
- Javascript 右移0位的作用
Javascript 中右移0位可以用来快速去掉小数,关于位移运算的定义: 右移运算是将一个二进制位的操作数按指定移动的位数向右移动,移出位被丢弃,左边移出的空位或者一律补0,或者补符号位. 实际看下 ...
- java连接sql server2005
转自:http://blog.sina.com.cn/s/blog_889b58310100zqyz.html 一:配置 第一步:在网上下载SQLServer2005的驱动包 http://www.m ...
- css background-size
先来看下语法:background-size: length|percentage|cover|contain;具体的值,百分比都ok,w3c上面说的很清楚,当时具体的值或者百分比的时候,第一个表示宽 ...
- SpringMVC中使用Cron表达式的定时器
SpringMVC中使用Cron表达式的定时器 cron(定时策略)简要说明 顺序: 秒 分 时 日 月 星期 年份 (7个参数,空格隔开各个参数,年份非必须参数) 通配符: , 如果分钟位置为* 1 ...
- 一个大数据的demo
package test.admin; import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.Fil ...
- 《C与指针》第十一章练习
本章问题 1.在你的系统中,你能够声明的静态数组最大的长度能达到多少?使用动态内存分配,你最大能获取的内存块有多少? answer: This will vary from system to sys ...
- 如何搭建 node,react 开发环境
项目相关内容:Sublime + Node + React --注意:在 windows 操作系统中,如果把 node 安装在系统盘(一般是C盘),会导致 node 没有操作文件的权限的问题,如无法新 ...
- Arcgis Server 10.2默认服务端口号修改方法
本人安装Arcgis Server 10.2之后发布了一个地图服务,该服务默认使用的端口号是6080,本人使用的是教育网,使用教育网均能正常使用该服务,但是使用电信或者移动网络均不能正常访问该网站. ...
- jmeter录制移动APP脚本
一.准备环境 准备好jmeter运行环境 在电脑端安装无线Wifi插件,保证手机与电脑处于同一个局域网中 如果本机JDK版本为1.6,则升级JDK版本至1.7,否则,在HTTPS Domains中无法 ...
- [转]PHP如何关闭notice级别的错误提示
1.在php.ini文件中改动error_reporting改为: error_reporting=E_ALL & ~E_NOTICE 2.如果你不能操作php.ini文件,你可以使用如下方法 ...