scikit-learn的梯度提升算法(Gradient Boosting)使用
前言:本文的目的是记录sklearn包中GBRT的使用,主要是官网各参数的意义;对于理论部分和实际的使用希望在只是给出出处,希望之后有时间能补充完整
摘要:
1.示例
2.模型主要参数
3.模型主要属性变量
内容:
1.示例
>>> import numpy as np
>>> from sklearn.metrics import mean_squared_error
>>> from sklearn.datasets import make_friedman1
>>> from sklearn.ensemble import GradientBoostingRegressor
>>> X, y = make_friedman1(n_samples=1200, random_state=0, noise=1.0)
>>> X_train, X_test = X[:200], X[200:]
>>> y_train, y_test = y[:200], y[200:]
>>> est = GradientBoostingRegressor(n_estimators=100, learning_rate=0.1,
... max_depth=1, random_state=0, loss='ls').fit(X_train, y_train)
>>> mean_squared_error(y_test, est.predict(X_test))
5.00...
2.模型主要参数
2.1 n_estimators : int (default=100)
梯度提升的迭代次数,也是弱分类器的个数
2.2 loss : {‘ls’, ‘lad’, ‘huber’, ‘quantile’}, optional (default=’ls’)
损失函数
2.3 learning_rate : float, optional (default=0.1)
SGB(随机梯度提升)的步长,也叫学习速度,一般情况下learning_rate越低,n_estimators越大;
经验表明learning_rate越小,测试误差越小;具体的值参看http://scikit-learn.org/stable/modules/ensemble.html#Regularization
2.4 max_depth : integer, optional (default=3)
决策树桩(Decision Stump)的最大深度,预剪枝操作(这里的树深度不包括树根)
2.5 warm_start : bool, default: False
如果True,会存储之前的拟合结果,以供增加迭代次数
3.模型主要属性变量
3.1 train_score_ : array, shape = [n_estimators]
存储每次迭代的训练误差
3.2 feature_importances_ : array, shape = [n_features]
特征重要性,具体参照:http://scikit-learn.org/stable/modules/ensemble.html#random-forest-feature-importance
scikit-learn的梯度提升算法(Gradient Boosting)使用的更多相关文章
- 梯度提升树 Gradient Boosting Decision Tree
Adaboost + CART 用 CART 决策树来作为 Adaboost 的基础学习器 但是问题在于,需要把决策树改成能接收带权样本输入的版本.(need: weighted DTree(D, u ...
- Facebook Gradient boosting 梯度提升 separate the positive and negative labeled points using a single line 梯度提升决策树 Gradient Boosted Decision Trees (GBDT)
https://www.quora.com/Why-do-people-use-gradient-boosted-decision-trees-to-do-feature-transform Why ...
- 梯度提升树GBDT算法
转自https://zhuanlan.zhihu.com/p/29802325 本文对Boosting家族中一个重要的算法梯度提升树(Gradient Boosting Decison Tree, 简 ...
- 梯度提升树(GBDT)原理小结
在集成学习之Adaboost算法原理小结中,我们对Boosting家族的Adaboost算法做了总结,本文就对Boosting家族中另一个重要的算法梯度提升树(Gradient Boosting De ...
- [机器学习]梯度提升决策树--GBDT
概述 GBDT(Gradient Boosting Decision Tree) 又叫 MART(Multiple Additive Regression Tree),是一种迭代的决策树算法,该算法由 ...
- 梯度提升树(GBDT)原理小结(转载)
在集成学习值Adaboost算法原理和代码小结(转载)中,我们对Boosting家族的Adaboost算法做了总结,本文就对Boosting家族中另一个重要的算法梯度提升树(Gradient Boos ...
- 集成学习之Boosting —— Gradient Boosting原理
集成学习之Boosting -- AdaBoost原理 集成学习之Boosting -- AdaBoost实现 集成学习之Boosting -- Gradient Boosting原理 集成学习之Bo ...
- 论文笔记:LightGBM: A Highly Efficient Gradient Boosting Decision Tree
引言 GBDT已经有了比较成熟的应用,例如XGBoost和pGBRT,但是在特征维度很高数据量很大的时候依然不够快.一个主要的原因是,对于每个特征,他们都需要遍历每一条数据,对每一个可能的分割点去计算 ...
- GBDT(梯度提升树) 原理小结
在之前博客中,我们对Boosting家族的Adaboost算法做了总结,本文就对Boosting家族中另一个重要的算法梯度提升树(Gradient Boosting Decison Tree, 以下简 ...
随机推荐
- OD使用教程9
先运行程序打开about,发现这是一个未注册的软件需要注册后才能使用里面的工具,所以随便注册一下,跳出一个提示说注册的是非法的邮箱,所以就可以以此做为突破口来破解这个程序 将提示的语句作为关键字去找出 ...
- Cracking-- 1.1 判断字符串中是否有重复字符
第三种方法为位运算的方法. 位运算符: << 左移 & 与 | 或 #include <iostream> #include <string> #incl ...
- Tomcat7下出现The requested resource(/)is not available
1首先确保你的localhost是否正常运行解决方案:1观察项目是否部署2重新将tomcat7导入 2确保你的项目名后跟index.jsp是否正常运行解决方案:1右键项目名,web进行查询,观察部署的 ...
- hdu 1181(DFS)变 形 课
变形课 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/65536 K (Java/Others)Total Submis ...
- windows sdk编程 richedit创建,像十六进制编辑器一样显示文件
编译环境 :windows 7 64位 vs2010,工程创建选择"win32项目" 注意添加几个头文件 #include <WinBase.h> #include & ...
- jquery 常用方法
1:判断checkbox是否选中 <input type="checkbox" id="cbx" /><label for="cbx ...
- Sass的基本运算(转载)
转载于:http://www.cnblogs.com/Medeor/p/4966952.html Sass中的基本运算 一.加法 在 CSS 中能做运算的,到目前为止仅有 calc() 函数可行.但在 ...
- Python学习之路--进程,线程,协程
进程.与线程区别 cpu运行原理 python GIL全局解释器锁 线程 语法 join 线程锁之Lock\Rlock\信号量 将线程变为守护进程 Event事件 queue队列 生产者消费者模型 Q ...
- 一个字体引发的bug
delphi 7 中默认字体样式为‘MS Sans Serif’,一般情况下子级控件会继承父级一些属性,其中包括字体(包括字体大小,字体样式,颜色等)属性.如果动态创建控件且需要修改字体颜色或者大小时 ...
- Ajax的同步与异步
原文地址:http://www.cnblogs.com/Joetao/articles/3525007.html <%@ Page Language="C#" AutoEve ...