Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

简介

Faster R-CNN是很经典的two-stage的目标检测方法,前面看了Selective Search以为在这里可以用到,但是作者在这篇文章里面没有采用Selective Search方法得到候选框,而是采用了Edge Boxes方法得到的候选框,好吧,再去看看这个方法到底快在哪里。Faster R-CNN分为两个过程,第一个过程是通过RPN网络得到候选框,第二个过程是利用Fast RCNN网络进行分类,普遍two-stage网络的准确度比one-stage的高,但是速度很慢。

Faster R-CNN

faster rcnn 大致流程图如下

网络结构

Region Proposal Network

RPN网络是用来获取proposals的网络,将任意size的图片输入到网络中,得到多组proposals,这些proposals包含中心点的位置x、y和宽高w、h来唯一确定一个框,而怎么得到这些proposals呢?

文中是先用一个小网络得到feature map,这个feature map是 13✖13✖256的,然后采用一个n✖n的滑窗去滑这个feature map,得到一个256-d的向量,而文章中是使用的n=3的滑窗去滑的。这个滑动过程其实是用一个3✖3✖256✖256的卷积核去卷积的过程。

anchors

在每个滑窗的区域,会同时预测多个region proposals,假定每个sliding window预测k种框,那么regression layer就输出4k个参数,很好理解,就是x、y、w、h;cls层输出2k个scores,即是背景还是不是背景。而文章中的anchor指的就是每个sliding window的中心,文章默认采用了3种scale和3种aspect ratio,也就是9种不同的长宽比放缩比,这样每个anchor对应的就是原图种的1种位置,也就是说一个feature map中的点对应9个anchor。假设feature map是W✖H的,那么我们会得到9WH个anchor。

文中方法最终要的一点就是anchors具有平移不变性。也就是说,如果图像中的某一个物体发生了平移,那么我们应该能够通过同样的方法也能够准确的预测到这个proposal,无论它在任何位置。

最终应该生成这九种anchor box

Loss Function

我们可以知道,输出的是两部分,一部分是是不是背景的分类loss,另一部分是预测的bbox的坐标宽高的regression loss,于是很容易去理解作者下图中的loss function。

参数解释在上图中。其中Ncls和Nreg是归一化的,λ是用来调整两个loss之间权重分配的,也很好理解。

作者在文中采用的是Ncls=256,Nreg约等于2400,这样他的λ设置成了10,这是为了使得两者权重大致相等。而下面又解释了公式中t也就是变换是怎么计算的:

参数解释当然也在图中。

之所以需要求这个t,是因为实际预测到的框和ground-truth box之间是有一定差距的,比如下面这张图:

所以我们通过求得一个线性变换使得A框能够尽可能接近G框,变换的结果就是G'框,这样可以使得结果更接近G。而上面公式的解释呢,我理解的就是分别计算anchor和预测的框之间的变换、anchor和ground truth 框之间的变换,通过这两个变换来计算loss,也就是上面那个公式里的Lreg部分。

标记anchor

我们知道,loss里面关于是不是背景也有个loss,标记规则很简单

  1. 超过1000✖600的anchor box去除
  2. IOU最大,label=1
  3. IOU>0.7,label=1
  4. IOU<0.3,label=0

训练

然后就是训练RPN了。在训练RPN的时候呢,一个Mini batch是我们在一张图中随机选取的256个proposal组成的,正负样本的比例应该是1比1,正样本不足128,就补负样本,负样本不足就补正样本(一般负样本不会不足)。

一个非常透彻的理解:Faster R-CNN中RPN网络的理解
论文原文:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

[论文理解] Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks的更多相关文章

  1. 深度学习论文翻译解析(十三):Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

    论文标题:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 标题翻译:基于区域提议(Regi ...

  2. 中文版 Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

    Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 摘要 最先进的目标检测网络依靠区域提出算法 ...

  3. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks论文理解

    一.创新点和解决的问题 创新点 设计Region Proposal Networks[RPN],利用CNN卷积操作后的特征图生成region proposals,代替了Selective Search ...

  4. 论文阅读笔记二十七:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks(CVPR 2016)

    论文源址:https://arxiv.org/abs/1506.01497 tensorflow代码:https://github.com/endernewton/tf-faster-rcnn 室友对 ...

  5. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks(理解)

    0 - 背景 R-CNN中检测步骤分成很多步骤,fast-RCNN便基于此进行改进,将region proposals的特征提取融合成共享卷积层问题,但是,fast-RCNN仍然采用了selectiv ...

  6. 目标检测(四)Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

    作者:Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun SPPnet.Fast R-CNN等目标检测算法已经大幅降低了目标检测网络的运行时间. ...

  7. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

    将 RCN 中下面 3 个独立模块整合在一起,减少计算量: CNN:提取图像特征 SVM:目标分类识别 Regression 模型:定位 不对每个候选区域独立通过 CN 提取特征,将整个图像通过 CN ...

  8. 【CV论文阅读】Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

    由RCNN到FAST RCNN一个很重要的进步是实现了多任务的训练,但是仍然使用Selective Search算法来获得ROI,而FASTER RCNN就是把获得ROI的步骤使用一个深度网络RPN来 ...

  9. [论文理解] Acquisition of Localization Confidence for Accurate Object Detection

    Acquisition of Localization Confidence for Accurate Object Detection Intro 目标检测领域的问题有很多,本文的作者捕捉到了这样一 ...

随机推荐

  1. VMware S/4 HANA OP 1511虚拟机下载,64G内存限制解决方案

    http://www.itpub.net/thread-2057212-1-1.html S4 HANA OP 1511 Scale Out

  2. WCF大文件传输【转】

    http://www.cnblogs.com/happygx/archive/2013/10/29/3393973.html WCF大文件传输 WCF传输文件的时候可以设置每次文件的传输大小,如果是小 ...

  3. ACM-ICPC2018焦作网络赛 Mathematical Curse(dp)

    Mathematical Curse 22.25% 1000ms 65536K   A prince of the Science Continent was imprisoned in a cast ...

  4. 数据库路由中间件MyCat - 使用篇(4)

    此文已由作者张镐薪授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. 配置MyCat 3. 配置conf/rule.xml 1.5GA版本中的规则配置比较笨,2.0中优化了一些, ...

  5. 用 Heapster 监控集群

    Heapster 是 Kubernetes 原生的集群监控方案.Heapster 以 Pod 的形式运行,它会自动发现集群节点.从节点上的 Kubelet 获取监控数据.Kubelet 则是从节点上的 ...

  6. [openjudge] 2797最短前缀 Trie

    描述 一个字符串的前缀是从该字符串的第一个字符起始的一个子串.例如 "carbon"的字串是: "c", "ca", "car&q ...

  7. Web项目开发介绍及实战项目介绍

    引言 本系列课程我们将学些Golang语言中的Web开发框架Iris的相关知识和用法.通过本系列视频课程,大家能够从零到一经历一个完整项目的开发,并在课程中了解实战项目开发的流程和项目设涉及的各个模块 ...

  8. CentOS 6.5 安装Clang 3.5.0

    来自引用: http://www.cnblogs.com/dudu/p/4294374.html 编译llvm几乎耗费了1个小时-.. 编译CoreCLR需要Clang 3.5,而CentOS上安装的 ...

  9. SpringMVC之WebMVC介绍

    一.MVC是什么 二.常用的MVC框架 三.MVC模式的优缺点 四.SpringMVC简介

  10. jconsole 本地连接失败

    http://limaoyuan.iteye.com/blog/1541745 加jvm 启动参数即可: -Dcom.sun.management.jmxremote  -Dcom.sun.manag ...