题目描述

A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路。每一条道路对车辆都有重量限制,简称限重。现在有 q 辆货车在运输货物, 司机们想知道每辆车在不超过车辆限重的情况下,最多能运多重的货物。

输入输出格式

输入格式:

输入文件名为 truck.in。

输入文件第一行有两个用一个空格隔开的整数 n,m,表示 A 国有 n 座城市和 m 条道

路。
接下来 m 行每行 3 个整数 x、 y、 z,每两个整数之间用一个空格隔开,表示从 x 号城市到 y 号城市有一条限重为 z 的道路。意:x 不等于 y,两座城市之间可能有多条道路。

接下来一行有一个整数 q,表示有 q 辆货车需要运货。

接下来 q 行,每行两个整数 x、y,之间用一个空格隔开,表示一辆货车需要从 x 城市运输货物到 y 城市,注意:x 不等于 y。

输出格式:

输出文件名为 truck.out。

输出共有 q 行,每行一个整数,表示对于每一辆货车,它的最大载重是多少。如果货

车不能到达目的地,输出-1。

输入输出样例

输入样例#1:

4 3
1 2 4
2 3 3
3 1 1
3
1 3
1 4
1 3
输出样例#1:

3
-1
3

说明

对于 30%的数据,0 < n < 1,000,0 < m < 10,000,0 < q< 1,000; 对于 60%的数据,0 < n < 1,000,0 < m < 50,000,0 < q< 1,000; 对于 100%的数据,0 < n < 10,000,0 < m < 50,000,0 < q< 30,000,0 ≤ z ≤ 100,000。

倍增求LCA,然后在两个结点到其最近公共祖先的路上找最短路,就是答案。

长度最小值也可以倍增求,但是一个个上溯好像也不会T

 /*by SilverN*/
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
const int mxn=;
//bas
int n,m;
//edge
struct li{
int u,v,dis;
}line[mxn];
int cmp(li a,li b){
return a.dis>b.dis;
}
struct node{
int v,dis;
int next;
}e[mxn];
int hd[mxn],cnt;
//
//bc
int fa[mxn];
void init(){
for(int i=;i<=n;i++)fa[i]=i;
}
int find(int x){
if(fa[x]==x)return x;
return fa[x]=find(fa[x]);
}
//tree
int dep[mxn];
int f[mxn][];
int w[mxn][];
//
void add_edge(int u,int v,int dis){
e[++cnt].next=hd[u];e[cnt].dis=dis;e[cnt].v=v;hd[u]=cnt;
e[++cnt].next=hd[v];e[cnt].dis=dis;e[cnt].v=u;hd[v]=cnt;
}
void kruskal(){
int i,j;
int tot=;
for(i=;i<=m;i++){
int x=find(line[i].u),y=find(line[i].v);
if(x!=y){
fa[x]=y;
tot++;
add_edge(line[i].u,line[i].v,line[i].dis);
}
}
}
void dfs(int u,int fafa){
dep[u]=dep[fafa]+;
f[u][]=fafa;
int i,j;
for(i=hd[u];i;i=e[i].next){
int v=e[i].v;
if(v==fafa)continue;
w[v][]=e[i].dis;
dfs(v,u);
}
return;
}
void solve(){
int i,j;
for(i=;i<=n;i++)if(!dep[i]){
dep[i]=;
dfs(i,);
}
for(j=;j<=;j++)
for(i=;i<=n;i++){
f[i][j]=f[f[i][j-]][j-];
}
for(j=;j<=;j++)
for(i=;i<=n;i++){
w[i][j]=min(w[i][j-],w[f[i][j-]][j-]);
} }
int LCA(int x,int y){
if(dep[x]<dep[y])swap(x,y);
int i;
for(i=;i>=;i--)if(dep[f[x][i]]>=dep[y])x=f[x][i];
if(x==y)return x;
for(i=;i>=;i--)
if(f[x][i]!=f[y][i]) x=f[x][i],y=f[y][i];
return f[x][];
}
int mdis(int x,int rt){
int d=dep[x]-dep[rt];
int res=1e9;
for(int i=;i>=;i--)
if((d>>i)&){
res=min(res,w[x][i]);
x=f[x][i];
}
return res;
}
int main(){
scanf("%d%d",&n,&m);
int i,j;
int u,v,dis;
for(i=;i<=m;i++) scanf("%d%d%d",&line[i].u,&line[i].v,&line[i].dis);
sort(line+,line+m+,cmp);
init();
kruskal();
solve();
int q;
scanf("%d",&q);
int x,y;
for(i=;i<=q;i++){
scanf("%d%d",&x,&y);
if(find(x)!=find(y)){
printf("-1\n");
continue;
}
int rt=LCA(x,y);
if(rt==){
printf("-1\n");
continue;
}
int ans=min(mdis(x,rt),mdis(y,rt));
printf("%d\n",ans);
}
return ;
}

[NOIP2013] 提高组 洛谷P1967 货车运输的更多相关文章

  1. NOIP 2013 提高组 洛谷P1967 货车运输 (Kruskal重构树)

    题目: A 国有 nn 座城市,编号从 11 到 nn,城市之间有 mm 条双向道路.每一条道路对车辆都有重量限制,简称限重. 现在有 qq 辆货车在运输货物, 司机们想知道每辆车在不超过车辆限重的情 ...

  2. 洛谷 P1967 货车运输

    洛谷 P1967 货车运输 题目描述 A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货物, 司机们想知道每辆车在 ...

  3. 洛谷P3379lca,HDU2586,洛谷P1967货车运输,倍增lca,树上倍增

    倍增lca板子洛谷P3379 #include<cstdio> struct E { int to,next; }e[]; ],anc[][],log2n,deep[],n,m,s,ne; ...

  4. 【杂题总汇】NOIP2013(洛谷P1967) 货车运输

    [洛谷P1967] 货车运输 重做NOIP提高组ing... +传送门-洛谷P1967+ ◇ 题目(copy from 洛谷) 题目描述 A国有n座城市,编号从1到n,城市之间有m条双向道路.每一条道 ...

  5. 洛谷 P1967 货车运输(克鲁斯卡尔重构树)

    题目描述 AAA国有nn n座城市,编号从 11 1到n nn,城市之间有 mmm 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 qqq 辆货车在运输货物, 司机们想知道每辆车在不超过车 ...

  6. 洛谷—— P1967 货车运输 || COGS——C 1439. [NOIP2013]货车运输

    https://www.luogu.org/problem/show?pid=1967#sub  ||  http://www.cogs.pro/cogs/problem/problem.php?pi ...

  7. 洛谷P1967 货车运输 [noip2013] 图论

    正解:kruskal+LCA 解题报告: 哇真实心痛了...明明都没多少时间了我居然耗了一个上午+一个中午在上面?哭死辽我QAQ果然菜是原罪QAQ 然后这题,我先港下60pts做法趴?话说其实我觉得我 ...

  8. 洛谷 P1967 货车运输 Label: 倍增LCA && 最小瓶颈路

    题目描述 A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货物, 司机们想知道每辆车在不超过车辆限重的情况下,最多 ...

  9. 洛谷P1967 货车运输

    题目描述 \(A\)国有\(n\)座城市,编号从\(1\)到\(n\),城市之间有\(m\)条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有\(q\)辆货车在运输货物, 司机们想知道每辆车在 ...

随机推荐

  1. 二十二、MySQL 正则表达式

    MySQL 正则表达式 在前面的章节我们已经了解到MySQL可以通过 LIKE ...% 来进行模糊匹配. MySQL 同样也支持其他正则表达式的匹配, MySQL中使用 REGEXP 操作符来进行正 ...

  2. 安装并配置多实例Mysql数据库

    1.安装Mysql需要的依赖包 yum -y install ncurses-devel libaio-devel cmake 2.创建Mysql用户账号 useradd -s /sbin/nolog ...

  3. php使用curl获取文本出现中文乱码的解决办法

    在使用php的curl获取远程html文本时出现了中文乱码. 解决办法的代码如下: $url = "www.ecjson.com";//获取页面内容$ch = curl_init( ...

  4. python面试题之介绍一下Python中webbrowser的用法

    所属网站分类: 面试经典 > python 作者:外星人入侵 链接: http://www.pythonheidong.com/blog/article/13/ 来源:python黑洞网 www ...

  5. NAND Flash和NOR Flash的比较

    目前Flash主要有两种NOR Flash和NADN Flash.NOR Flash的读取和我们常见的SDRAM的读取是一样,用户可以直接运行装载在NOR FLASH里面的代码,这样可以减少SRAM的 ...

  6. hihocoder#1098 : 最小生成树二·Kruscal算法

    #1098 : 最小生成树二·Kruscal算法 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 随着小Hi拥有城市数目的增加,在之间所使用的Prim算法已经无法继续使用 ...

  7. Leetcode 105. 从前序与中序遍历序列构造二叉树

    题目链接 题目描述 根据一棵树的前序遍历与中序遍历构造二叉树. 注意: 你可以假设树中没有重复的元素. 例如,给出 前序遍历 preorder = [3,9,20,15,7] 中序遍历 inorder ...

  8. Java的内存回收

    一.java引用的种类 1.对象在内存中的状态 可达状态:当一个对象被创建后,有一个以上的引用变量指向它. 可恢复状态: 不可达状态:当对象的所有关联被切断,且系统调用所有对象的finalize方法依 ...

  9. Python操作MySQL数据库(二)

    pymsql是Python中操作MySQL的模块,其使用方法和MySQLdb几乎相同. 下载安装: pip install pymysql 1.执行SQL语句 #!/usr/bin/env pytho ...

  10. 友推在Android 实现微信等分享代码的常见问题

    介绍,最近 做了一个项目,需要集成分享功能.果断选择 友推. 集成过程,参考友推官方提供的集成文档即可 废话不多说,主要说一下自己在集成过程中遇到的一些问题,主要有两个: 问题1. 引入youtui- ...