【bzoj4966】总统选举 随机化+线段树
题目描述
输入
输出
样例输入
5 4
1 2 3 4 5
1 2 1 1 3
5 5 1 2 2 4
2 4 2 0
3 4 2 1 4
样例输出
1
5
5
2
-1
题解
随机化+线段树
考虑如果区间中一个数的出现次数等于区间长度的一半,那么期望随机找两次即可找到该数。
所以理论上看,每次随机找20次,完全正确地处理500000个询问的概率约为0.62。而实际上由于数据水,随机15次即可AC。
然后就是找某数在区间中出现的次数,直接对每个数开一棵线段树即可。
时间复杂度$O(15n\log n)$,实际上本题很卡时(卡随机化),需要使用结构体写线段树才可以卡过。
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#define N 500010
#define lson l , mid , a[x].ls
#define rson mid + 1 , r , a[x].rs
using namespace std;
struct data
{
int ls , rs , si;
}a[N * 60];
int w[N] , root[N] , tot;
inline int read()
{
int ret = 0; char ch = getchar();
while(ch < '0' || ch > '9') ch = getchar();
while(ch >= '0' && ch <= '9') ret = ret * 10 + ch - '0' , ch = getchar();
return ret;
}
void update(int p , int v , int l , int r , int &x)
{
if(!x) x = ++tot;
a[x].si += v;
if(l == r) return;
int mid = (l + r) >> 1;
if(p <= mid) update(p , v , lson);
else update(p , v , rson);
}
int query(int b , int e , int l , int r , int x)
{
if(!x) return 0;
if(b <= l && r <= e) return a[x].si;
int mid = (l + r) >> 1 , ans = 0;
if(b <= mid) ans += query(b , e , lson);
if(e > mid) ans += query(b , e , rson);
return ans;
}
int main()
{
srand(2333666);
int n , m , i , l , r , s , k , x , p , t;
n = read() , m = read();
for(i = 1 ; i <= n ; i ++ ) w[i] = read() , update(i , 1 , 1 , n , root[w[i]]);
while(m -- )
{
l = read() , r = read() , s = read() , k = read() , p = 0;
for(i = 1 ; i <= 15 ; i ++ )
{
t = w[rand() % (r - l + 1) + l];
if(query(l , r , 1 , n , root[t]) > (r - l + 1) >> 1)
{
p = t;
break;
}
}
if(!p) p = s;
printf("%d\n" , p);
for(i = 1 ; i <= k ; i ++ ) x = read() , update(x , -1 , 1 , n , root[w[x]]) , update(x , 1 , 1 , n , root[p]) , w[x] = p;
}
p = -1;
for(i = 1 ; i <= 15 ; i ++ )
{
t = w[rand() % n + 1];
if(a[root[t]].si > n >> 1)
{
p = t;
break;
}
}
printf("%d\n" , p);
return 0;
}
【bzoj4966】总统选举 随机化+线段树的更多相关文章
- BZOJ4966 : 总统选举
线段树维护每个点的最有可能是答案的数以及它的权重. 合并两个节点的时候,将权重互相抵消,保留较大的那一个. 得到答案后,再在对应权值的Treap中查询出现次数,检查是否真正是答案. 时间复杂度$O(n ...
- 【BZOJ4966】总统选举 线段树+随机化
[BZOJ4966]总统选举 Description 黑恶势力的反攻计划被小C成功摧毁,黑恶势力只好投降.秋之国的人民解放了,举国欢庆.此时,原秋之国总统因没能守护好国土,申请辞职,并请秋之国人民的大 ...
- luogu P3765 总统选举(线段树维护摩尔投票+平衡树)
这题需要一个黑科技--摩尔投票.这是一个什么东西?一个神奇的方法求一个序列中出现次数大于长度一半的数. 简而言之就是同加异减: 比如有一个代表投票结果的序列. \[[1,2,1,1,2,1,1]\] ...
- 51nod 1494 选举拉票 (线段树+扫描线)
1494 选举拉票 题目来源: CodeForces 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 收藏 关注 现在你要竞选一个县的县长.你去对每一个选民进 ...
- 51nod 1494 选举拉票 | 线段树
51nod1494 选举拉票 题面 现在你要竞选一个县的县长.你去对每一个选民进行了调查.你已经知道每一个人要选的人是谁,以及要花多少钱才能让这个人选你.现在你想要花最少的钱使得你当上县长.你当选的条 ...
- 洛谷 P3765 总统选举 解题报告
P3765 总统选举 题目背景 黑恶势力的反攻计划被小C成功摧毁,黑恶势力只好投降.秋之国的人民解放了,举国欢庆.此时,原秋之国总统因没能守护好国土,申请辞职,并请秋之国人民的大救星小C钦定下一任.作 ...
- hdu5091 线段树
题意: 给了n个点在平面中 n<10000 然后 将这给了一个 宽为W 高为 H 的 矩形, 然后 使得这个矩形可以 涵盖最多的点有多少个,然后矩形的宽平行x 轴高平行y轴.可以将该矩形 水平 ...
- bzoj3932--可持久化线段树
题目大意: 最近实验室正在为其管理的超级计算机编制一套任务管理系统,而你被安排完成其中的查询部分.超级计算机中的 任务用三元组(Si,Ei,Pi)描述,(Si,Ei,Pi)表示任务从第Si秒开始,在第 ...
- codevs 1082 线段树练习 3(区间维护)
codevs 1082 线段树练习 3 时间限制: 3 s 空间限制: 128000 KB 题目等级 : 大师 Master 题目描述 Description 给你N个数,有两种操作: 1:给区 ...
随机推荐
- 2018.6.29 JavaScript
一.使用JS数组实现冒泡排序 二.创建Teacher对象,添加(姓名.年龄.地址.学生对象[学生姓名,学生性别])属性 要求: 创建多个老师对象,每个老师下管理多个学生,显示每个老师下所有的学生信息 ...
- js中随机数获取
// 结果为0-1间的一个随机数(包括0,不包括1) var randomNum1 = Math.random(); //console.log(randomNum1); // 函数结果为入参的整数部 ...
- bootstrap table 自定义checkbox样式
//css <style> .checkbox-custom { position: relative; padding: 0 15px 0 25px; margin-bottom: 7p ...
- rand()和srand()
C++中rand() 函数的用法 1.rand()不需要参数,它会返回一个从0到最大随机数的任意整数,最大随机数的大小通常是固定的一个大整数. 2.如果你要产生0~99这100个整数中的一个随机整数, ...
- linux系统串口编程实例
在嵌入式开发中一些设备如WiFi.蓝牙......都会通过串口进行主机与从机间通信,串口一般以每次1bit位进行传输,效率相对慢. 在linux系统下串口的编程有如下几个步骤,最主要的是串口初始化! ...
- BZOJ2287: 【POJ Challenge】消失之物(背包dp)
题意 ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢?” ...
- git提交时报错 permission denied
git push 时报错:permission denied xxx 目前很多解决办法是生成公钥和秘钥,这种方法安全可靠,比较适用于一台电脑对应一个git账户,但是多个账户在同一台电脑上提交使用git ...
- Mbps、Kbps、bps、kb、mb区别和换算
Mbps 即 Milionbit pro second(百万位每秒) Kbps 即 Kilobit pro second(千位每秒) bps 即 bit pro second(位每秒) 速度单位,bi ...
- 神经网络系列学习笔记(二)——神经网络之DNN学习笔记
一.单层感知机(perceptron) 拥有输入层.输出层和一个隐含层.输入的特征向量通过隐含层变换到达输出层,在输出层得到分类结果: 缺点:无法模拟稍复杂一些的函数(例如简单的异或计算). 解决办法 ...
- eclipse projectExplorer视图(以包的方式显示)与navigator视图切换(以文件夹的方式显示)及树状视图与平面视图的切换
projectExplorer与navigator的切换 projectExplorer视图效果 想要此视图效果步骤如下: 分割------------------------------------ ...