【题解】CJOI2019 登峰造鸡境 (Prufer序列+斯特林数)

题目背景

  舒服了。

题目描述

你有一颗n个点的无根树,每个点有有一个标号(1~n)。
现在你知道,总共有m个叶子节点,求不同的树的形态方案数。
答案对\(10^9+7\)取模。

下面是一些可能有用的定义:
叶子:度数为1的点。
不同:若对于两颗标号相同的树\(T1=(V,E_1),T2=(V,E_2)\),\(T1\neq T2\)当且仅当存在\((u,v) \in E_1 ,(u,v) \notin E_2\)

输入格式

一共一行,第一行包含两个数n,m分别表示点的总个数和叶子数。
数据保证树一定存在。

输出格式

一行一个整数,输出答案对\(10^9+7\)取模的结果。

输入样例1

5 3

输出样例1

60

子任务

对于\(10\%\)的数据,保证\(n,m<=5\)
对于\(20\%\)的数据,保证\(n,m<=10\)
对于\(40\%\)的数据,保证\(n,m<=20\)
对于\(60\%\)的数据,保证\(n,m<=5000\)
对于另外\(10\%\)的数据,保证\(m=2\)
对于另外\(10\%\)的数据,保证\(m=n-1\)
对于另外\(10\%\)的数据,保证\(m>=n-5\)
对于\(100\%\)的数据,保证\(n,m<=2\times 10^5\)

\(Solution\)

树的计数问题先通过一一对应转换为Prufer序列,再根据Prufer序列和第二类斯特林数求解。

Prufer序列

假设得到一颗有标号的树\(T\),我们通过这样的操作可以得到一个序列,这个序列和它对应的树是一一对应的。也就是说,任何两个不同的合法的Prufer序列都会对应出不同的两颗树。注意到这里的树是带编号的。

​ 在树中,选取一个编号最小的叶子节点,将它的父亲节点加入Prufer序列,并且将这个叶子节点删去。

​ 直到只剩下两个节点为止(只有一条边没有确定了),此时已经可以确定整个树的形态了。

那么得到了一个个数是\(n-2\)个的序列,这个序列和树的形态一一对应。那么这\(n-2\)个元素的序列可以构成
\[
n^{n-2}
\]
种组合。

根据一一对应法则,也就是说有n个不带标号节点的树总共有\(n^{n-2}\)种组合

我们看一下这个序列的意义,一个节点在Prufer序列里出现的次数就是它的度数-1。那么现在问题就变成了,我要保证\(m\)个节点在Prufer序列里不出现。

第二类斯特林数

\(\begin{Bmatrix}n\\m\end{Bmatrix}\)表示\(n\)个元素划分为\(m\)个非空集合的方案数。

这里蕴藏的信息是:元素有区别,集合无区别。

递推公式

\[
{n \brace m}={n-1 \brace m-1}+m{n-1 \brace m}
\]

证明:见yyb博客。

容斥\(O(n)\)或者NTT\(O(n\log n)\)(求一列)

\[
S_2(n,m)=\begin{Bmatrix}n\\m\end{Bmatrix}=\frac 1 {m!} \sum_{i=0}^m (-1)^i{(m-i)^n}{m\choose i}
\]

证明:见yyb博客。

最后的答案
\[
(n-m)!\times{n\choose m}\times{n-2\brace n-m}
\]
因为斯特林数最后的盒子(集合)没有区别,然而我们这里是有区别的,所以应该乘上\((n-m)!\)补回来。

//@winlere
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>

using namespace std;  typedef long long ll;
inline int qr(){
      register int ret=0,f=0;
      register char c=getchar();
      while(c<48||c>57)f|=c==45,c=getchar();
      while(c>=48&&c<=57) ret=ret*10+c-48,c=getchar();
      return f?-ret:ret;
}
const int mod=1e9+7;
const int maxn=2e5+5;
int jc[maxn];
int inv[maxn];
int n,m,ans,k;

typedef const int& ct;
inline int ksm(int base,ct p){
      register int ret=1;
      for(register int t=p;t;t>>=1,base=1ll*base*base%mod)
        if(t&1) ret=1ll*ret*base%mod;
      return ret;
}

int C(int n,int m){
      if(n<m) return 0;
      return 1ll*jc[n]*inv[m]%mod*inv[n-m]%mod;
}

int S(ct n,ct m){
      register int ret=0;
      for(register int t=0;t<=m;++t)
        if(t&1) ret=(0ll+ret-1ll*ksm(m-t,n)*C(m,t)%mod+mod)%mod;
        else ret=(0ll+ret+1ll*ksm(m-t,n)*C(m,t)%mod+mod)%mod;
      return 1ll*ret*inv[m]%mod;
}

int main(){
#ifndef ONLINE_JUDGE
      freopen("dfzjj.in","r",stdin);
      freopen("dfzjj.out","w",stdout);
#endif
      jc[0]=1;
      inv[0]=1;
      for(register int t=1;t<maxn;++t) jc[t]=1ll*jc[t-1]*t%mod,inv[t]=1ll*inv[t-1]*ksm(t,mod-2LL)%mod;
      n=qr();m=qr();
      ans=1ll*jc[n-m]*C(n,m)%mod*S(n-2,n-m)%mod;
      printf("%d\n",ans);
      return 0;
}

【题解】CJOI2019 登峰造鸡境 (Prufer序列+斯特林数)的更多相关文章

  1. bzoj1211: [HNOI2004]树的计数(prufer序列+组合数学)

    1211: [HNOI2004]树的计数 题目:传送门 题解: 今天刚学prufer序列,先打几道简单题 首先我们知道prufer序列和一颗无根树是一一对应的,那么对于任意一个节点,假设这个节点的度数 ...

  2. bzoj1211树的计数 x bzoj1005明明的烦恼 题解(Prufer序列)

    1211: [HNOI2004]树的计数 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3432  Solved: 1295[Submit][Stat ...

  3. 【XSY2519】神经元 prufer序列 DP

    题目描述 有\(n\)点,每个点有度数限制,\(\forall i(1\leq i\leq n)\),让你选出\(i\)个点,再构造一棵生成树,要求每个点的度数不超过度数限制.问你有多少种方案. \( ...

  4. 【BZOJ1211】【HNOI2004】树的计数 prufer序列

    题目描述 给你\(n\)和\(n\)个点的度数,问你有多少个满足度数要求的生成树. 无解输出\(0\).保证答案不超过\({10}^{17}\). \(n\leq 150\) 题解 考虑prufer序 ...

  5. 【XSY1295】calc n个点n条边无向连通图计数 prufer序列

    题目大意 求\(n\)个点\(n\)条边的无向连通图的个数 \(n\leq 5000\) 题解 显然是一个环上有很多外向树. 首先有一个东西:\(n\)个点选\(k\)个点作为树的根的生成森林个数为: ...

  6. prufer序列学习笔记

    prufer序列是一个定义在无根树上的东西. 构造方法是:每次选一个编号最小的叶子结点,把他的父亲的编号加入到序列的最后.然后删掉这个叶节点.直到最后只剩下两个节点,此时得到的序列就是prufer序列 ...

  7. 【BZOJ1005】[HNOI2008]明明的烦恼(prufer序列)

    [BZOJ1005][HNOI2008]明明的烦恼(prufer序列) 题面 BZOJ 洛谷 题解 戳这里 #include<iostream> #include<cstdio> ...

  8. 【CF917D】Stranger Trees 树形DP+Prufer序列

    [CF917D]Stranger Trees 题意:给你一棵n个点的树,对于k=1...n,问你有多少有标号的n个点的树,与给出的树有恰好k条边相同? $n\le 100$ 题解:我们先考虑容斥,求出 ...

  9. BZOJ4766: 文艺计算姬(Prufer序列)

    题面 传送门 题解 结,结论题? 答案就是\(n^{m-1}m^{n-1}\) 我们考虑它的\(Prufer\)序列,最后剩下的两个点肯定是一个在左边一个在右边,设左边\(n\)个点,右边\(m\)个 ...

随机推荐

  1. luogu P1880 石子合并

    题目描述 在一个园形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆石子合并成1 ...

  2. ural 1519 fomular 1 既插头DP学习笔记

    直接看CDQ在2008年的论文吧. 个人认为她的论文有两个不明确的地方, 这里补充一下: 首先是轮廓的概念. 我们在进行插头DP时, 是从上往下, 从左往右逐个格子进行的, 已经处理的格子与未经处理的 ...

  3. ZFS -世界上最高级的文件系统之一

    https://www.oschina.net/news/44302/openzfs_launch_announcement https://en.wikipedia.org/wiki/ZFS ZFS ...

  4. 使用Eclipse Memory Analyzer进行内存泄漏分析三部曲

    源地址:http://seanhe.iteye.com/blog/898277 一.准备工作  分析较大的dump文件(根据我自己的经验2G以上的dump文件就需要使用以下介绍的方法,不然mat会出现 ...

  5. FenceSyne, flush, wait

    我看了下queue, command 的fence这个东西,它是做queque之间 queue和cpu之间同步用的 我理解下来就是这样 有两个condition ALL_GPU_COMMANDS_CO ...

  6. checkbox 自动换行

    把匹配的checkbox和文字用一对span标签包裹 并且给这个span标签加样式 display:inline-block <span style="display:inline-b ...

  7. Codis的源码编译生成tar包

    一.Go环境的安装 1.下载地址 https://golang.org/dl/2.解压 tar -zxvf go1.7.1.linux-amd64.tar.gz -C /usr/local 3.修改配 ...

  8. linux中expr用法

    名称:expr  ### 字串长度  shell>> expr length "this is a test"  14  ### 数字商数  shell>> ...

  9. Android开发之布局文件里实现OnClick事件关联处理方法

    一般监听OnClickListener事件,我们都是通过Button button = (Button)findViewById(....); button.setOClickLisener....这 ...

  10. windows ce.net开发概述

    依据开发所处的层次以及开发工具的不同,能够将嵌入式系统开发分为系统开发和应用开发. 系统开发所涉及的内容包含三个方面:系统定制.驱动程序开发.操作系统一致(BSP开发). 一系统开发 (1)      ...