1.支持向量机

#_*_ coding:utf-8 _*_
from sklearn import datasets
from sklearn import svm #装载内部测试数据集
digits = datasets.load_digits()
#设置参数
clf = svm.SVC(gamma = 0.001,C = 100.)
#训练
clf.fit(digits.data[:-1],digits.target[:-1])
#预测
print clf.predict(digits.data[-1:])

想在scikit中保存模型的话,可以使用python的内置模块pickle

#_*_ coding:utf-8 _*_
from sklearn import datasets
from sklearn import svm
import pickle
from sklearn.externals import joblib
#装载内部测试数据集
iris = datasets.load_iris()
X,y = iris.data,iris.target
#初始化模型
clf = svm.SVC()
#训练
clf.fit(X[:-1],y[:-1])
#保存模型
s = pickle.dumps(clf)
#装载模型
clf2 = pickle.loads(s)
#预测
print clf2.predict(X[-1:])

※在数据量非常大的时候,我们需要把模型保存在硬盘上,而不是字符串中

#_*_ coding:utf-8 _*_
from sklearn import datasets
from sklearn import svm
from sklearn.externals import joblib
#装载内部测试数据集
iris = datasets.load_iris()
X,y = iris.data,iris.target
#初始化模型
clf = svm.SVC()
#训练
clf.fit(X[:-1],y[:-1])
#保存模型
joblib.dump(clf,'filename.pkl')
#装载模型
clf2 = joblib.load('filename.pkl')
#预测
print clf2.predict(X[-1:])

2.如无特殊说明,输入数据都被转换成float64位,在下面的例子中X可以通过fit_transform(X)转换成float64:

#_*_ coding:utf-8 _*_

import numpy as np
from sklearn import random_projection rng = np.random.RandomState(0) X = rng.rand(10,2000)
Y = np.array(X)
X = np.array(X,dtype='float32')
print Y.dtype,X.dtype transformer = random_projection.GaussianRandomProjection()
X_new = transformer.fit_transform(X)
print X_new.dtype

3.重新装载并更新参数

#_*_ coding:utf-8 _*_

import numpy as np
from sklearn.svm import SVC rng = np.random.RandomState(0)
X = rng.rand(100,10)
y = rng.binomial(1,0.5,100)
X_test = rng.rand(5,10) clf = SVC()
clf.set_params(kernel = 'linear').fit(X,y) print clf.predict(X_test) clf.set_params(kernel = 'rbf').fit(X,y)
print clf.predict(X_test)

scikit-learn使用方法的更多相关文章

  1. Scikit Learn: 在python中机器学习

    转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...

  2. scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)

    scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...

  3. (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探

    一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...

  4. (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探

    目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...

  5. Scikit Learn

    Scikit Learn Scikit-Learn简称sklearn,基于 Python 语言的,简单高效的数据挖掘和数据分析工具,建立在 NumPy,SciPy 和 matplotlib 上.

  6. Query意图分析:记一次完整的机器学习过程(scikit learn library学习笔记)

    所谓学习问题,是指观察由n个样本组成的集合,并根据这些数据来预测未知数据的性质. 学习任务(一个二分类问题): 区分一个普通的互联网检索Query是否具有某个垂直领域的意图.假设现在有一个O2O领域的 ...

  7. Python第三方库(模块)"scikit learn"以及其他库的安装

    scikit-learn是一个用于机器学习的 Python 模块. 其主页:http://scikit-learn.org/stable/. GitHub地址: https://github.com/ ...

  8. 机器学习-scikit learn学习笔记

    scikit-learn官网:http://scikit-learn.org/stable/ 通常情况下,一个学习问题会包含一组学习样本数据,计算机通过对样本数据的学习,尝试对未知数据进行预测. 学习 ...

  9. Linear Regression with Scikit Learn

    Before you read  This is a demo or practice about how to use Simple-Linear-Regression in scikit-lear ...

  10. Scikit Learn安装教程

    Windows下安装scikit-learn 准备工作 Python (>= 2.6 or >= 3.3), Numpy (>= 1.6.1) Scipy (>= 0.9), ...

随机推荐

  1. jsp之获传统方式取后台数据

    1.建立模型对象: package com.java.model; public class Student { private String name; private int age; publi ...

  2. pycharm使用秘籍 和 pip命令

    python使用requirements.txt批量安装包 requirements.txt文件格式: requests==1.2.0  Flask==0.10.1 等等一系列包 cd 到requir ...

  3. FreeRTOS_事件标志组

    FreeRTOS事件标志组 事件标志组简介 1. 事件位(事件标志) 事件位用于表明某个事件是否发生,事件位通常用作事件标志,比如下面的几个例子: 当收到一条消息并且把这条消息处理掉以后就可以将某个位 ...

  4. vue 中根据地址名称获取实际经纬度方法

    <div id="container" class="map" style="margin-top:30px; width: 1200px;he ...

  5. NOIP模拟赛 无线通讯网

    [题目描述] 国防部计划用无线网络连接若干个边防哨所.2种不同的通讯技术用来搭建无线网络:每个边防哨所都要配备无线电收发器:有一些哨所还可以增配卫星电话. 任意两个配备了一条卫星电话线路的哨所(两边都 ...

  6. 科技庄园(背包dp)---对于蒟蒻来说死了一大片的奇题

    题目描述: Life种了一块田,里面种了一些桃树. Life对PFT说:“我给你一定的时间去摘桃,你必须在规定的时间之内回到我面前,否则你摘的桃都要归我吃!” PFT思考了一会,最终答应了! 由于PF ...

  7. 15Shell脚本—流程控制

    流程控制语句 尽管可以通过使用Linux命令.管道符.重定向以及条件测试语句编写最基本的Shell脚本,但是这种脚本并不适用于生产环境.原因是它不能根据真实的工作需求来调整具体的执行命令,也不能根据某 ...

  8. python入门:输出1-100之内的所有奇数和偶数(自写)

    #!/urs/bin/env python # -*- coding:utf-8 -*- #输出1-100之内的所有奇数和偶数(自写) """ 给x赋值等于1,wehil ...

  9. strace用法

    strace   --  trace system calls and signals     strace是Linux环境下的一款程序调试工具,用来监察一个应用程序所使用的系统调用及它所接收的系统信 ...

  10. 如何用纯 CSS 和 D3 创作一艘遨游太空的宇宙飞船

    效果预览 在线演示 按下右侧的"点击预览"按钮可以在当前页面预览,点击链接可以全屏预览. https://codepen.io/comehope/pen/oMqNmv 可交互视频 ...