先orz litble——KM算法

为什么要用KM算法##

因为有的题丧心病狂卡费用流

KM算法相比于费用流来说,具有更高的效率。

算法流程##

我们给每一个点设一个期望值【可行顶标】

对于左边的点来说,就是期望能匹配到多大权值的右边的点

对于右边的点来说,就是期望能在左边的点的期望之上还能产生多少贡献

两个点能匹配,当且仅当它们的期望值之和为这条边的权值

一开始初始化所有左点的期望是其出边的最大值,因为最理想情况下当然是每个点都匹配自己能匹配最大的那个

右点期望为0

然后我们逐个匹配,当一个点匹配失败时,所有左点的期望就过高了

我们从右点未匹配的点中找到离被匹配相差的期望最小的点,所有此次匹配涉及的左点减去这个期望值【使得能匹配的点多出了一个】,然后其匹配的右点要加上这个期望值【因为还要保证已匹配的点仍然能被匹配】

然后继续尝试匹配

直至所有点匹配完

板子:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 405,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int w[maxn][maxn],expa[maxn],expb[maxn],visa[maxn],visb[maxn],cp[maxn],dl[maxn];
int n;
bool dfs(int u){
visa[u] = true;
REP(i,n) if (!visb[i]){
int kl = expa[u] + expb[i] - w[u][i];
if (kl == 0){
visb[i] = true;
if (!cp[i] || dfs(cp[i])){
cp[i] = u; return true;
}
}
else dl[i] = min(dl[i],kl); }
return false;
}
int solve(){
REP(i,n) expa[i] = expb[i] = cp[i] = 0;
REP(i,n) REP(j,n) expa[i] = max(expa[i],w[i][j]);
REP(i,n){
REP(j,n) dl[j] = INF;
while (true){
REP(j,n) visa[j] = false,visb[j] = false;
if (dfs(i)) break;
int kl = INF;
REP(j,n) if (!visb[j]) kl = min(kl,dl[j]);
REP(j,n){
if (visa[j]) expa[j] -= kl;
if (visb[j]) expb[j] += kl;
else dl[j] -= kl;
}
}
}
int re = 0;
REP(i,n) re += w[cp[i]][i];
return re;
}
int main(){
n = read();
REP(i,n) REP(j,n) w[i][j] = read();
printf("%d\n",solve());
return 0;
}

KM算法【带权二分图完美匹配】的更多相关文章

  1. KM算法 带权二分匹配 O(n^3)

    #include<cstdio> #include<cstdlib> #include<cstring> #include<string> #inclu ...

  2. POJ 2195 Going Home (带权二分图匹配)

    POJ 2195 Going Home (带权二分图匹配) Description On a grid map there are n little men and n houses. In each ...

  3. KM(Kuhn-Munkres)算法求带权二分图的最佳匹配

    KM(Kuhn-Munkres)算法求带权二分图的最佳匹配 相关概念 这个算法个人觉得一开始时有点难以理解它的一些概念,特别是新定义出来的,因为不知道是干嘛用的.但是,在了解了算法的执行过程和原理后, ...

  4. 运动员最佳匹配问题 KM算法:带权二分图匹配

    题面: 羽毛球队有男女运动员各n人.给定2 个n×n矩阵P和Q.P[i][j]是男运动员i和女运动员j配对组成混合双打的男运动员竞赛优势:Q[i][j]是女运动员i和男运动员j配合的女运动员竞赛优势. ...

  5. Luogu 1559 运动员最佳匹配问题(带权二分图最大匹配)

    Luogu 1559 运动员最佳匹配问题(带权二分图最大匹配) Description 羽毛球队有男女运动员各n人.给定2 个n×n矩阵P和Q.P[i][j]是男运动员i和女运动员j配对组成混合双打的 ...

  6. 费用流模板(带权二分图匹配)——hdu1533

    /* 带权二分图匹配 用费用流求,增加源点s 和 汇点t */ #include<bits/stdc++.h> using namespace std; #define maxn 1000 ...

  7. POJ 2195 Going Home | 带权二分图匹配

    给个地图有人和房子 保证人==房子,每个人移动到房子处需要花费曼哈顿距离的代价 问让人都住在房子里最小代价 显然是个带权二分图最大匹配 转化成以一个网络,规定w是容量,c是代价 1.S向人连边,w=1 ...

  8. UVALive 4043 Ants(二分图完美匹配)

    题意:每个蚁群有自己的食物源(苹果树),已知蚂蚁靠气味辨别行进方向,所以蚁群之间的行动轨迹不能重叠.现在给出坐标系中n个蚁群和n棵果树的坐标,两两配对,实现以上要求.输出的第 i 行表示第 i 个蚁群 ...

  9. HDU 2255 奔小康赚大钱(带权二分图最大匹配)

    HDU 2255 奔小康赚大钱(带权二分图最大匹配) Description 传说在遥远的地方有一个非常富裕的村落,有一天,村长决定进行制度改革:重新分配房子. 这可是一件大事,关系到人民的住房问题啊 ...

随机推荐

  1. 前端面试题1:Object.prototype.toString.call() 、instanceof 以及 Array.isArray()三种方法判别数组的优劣和区别

    1. Object.prototype.toString.call() 每一个继承 Object 的对象都有 toString 方法,如果 toString 方法没有重写的话,会返回 [Object ...

  2. java对集合的操作,jxl操作excel

    http://www.cnblogs.com/epeter/p/5648026.html http://blog.sina.com.cn/s/blog_6145ed810100vbsj.html

  3. detection in video and image

    video中的detection,背景更加复杂,目标更加不聚焦,同时由于图片分辨率低于图像,因此更加难做. image中的Detection,背景相对简单些,目标更加聚焦,同时图片分辨率高,因此更加容 ...

  4. 用户和用户组以及 Linux 权限管理

    1.从 /etc/passwd 说起 前面的基本命令学习中,我们介绍了使用 passwd 命令可以修改用户密码.对于操作系统来说,用户名和密码是存放在哪里的呢?我们都知道一个站点的用户名和密码是存放在 ...

  5. k8s的configMap基本概念及案例

    pod中两种特殊类型的存储卷:secret,configMap  pod.spec.volumes.secret  pod.spec.volumes.configMap多数情况下,这两个存储卷不是给p ...

  6. 【CodeBase】PHP转换编码,读写文件/网页内容的防乱码方法

    核心代码: //检查字符串的编码 $charset=mb_detect_encoding($doc,['ASCII','GB2312','GBK','BIG5','UTF8'],TRUE); //字符 ...

  7. tcl之基本语法—1

  8. 【PHP】foreach语法

    foreach 语法结构提供了遍历数组的简单方式.foreach 仅能够应用于数组和对象,如果尝试应用于其他数据类型的变量,或者未初始化的变量将发出错误信息.有两种语法: foreach ($name ...

  9. thinkphp 3.2.3 - Route.class.php 解析(路由匹配)

    class Route { public static function check(){ $depr = C('URL_PATHINFO_DEPR'); // '/' $regx = preg_re ...

  10. Flask初学者:g对象,hook钩子函数

    Flask的g对象 作用:g可以可以看作是单词global的缩写,使用“from flask import g”导入,g对象的作用是保存一些在一次请求中多个地方的都需要用到的数据,这些数据可能在用到的 ...