题目链接:https://leetcode-cn.com/problems/container-with-most-water/description/

给定 n 个非负整数 $a_1,a_2,\cdots,a_{n-1},a_n$,每个数代表坐标中的一个点 $(i, a_i)$。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 $(i, ai_)$ 和 $(i, 0)$。

找出其中的两条线,使得它们与 $x$ 轴共同构成的容器可以容纳最多的水。

说明:你不能倾斜容器,且 $n$ 的值至少为 2。

示例:

输入: [1,8,6,2,5,4,8,3,7]
输出: 49

(引用来自官网上的)题解:

这种方法背后的思路在于,两线段之间形成的区域总是会受到其中较短那条长度的限制。此外,两线段距离越远,得到的面积就越大;

我们在由线段长度构成的数组中使用两个指针,一个放在开始,一个置于末尾;

此外,我们会使用变量 maxarea 来持续存储到目前为止所获得的最大面积;

在每一步中,我们会找出指针所指向的两条线段形成的区域,更新 maxarea,并将指向较短线段的指针向较长线段那端移动一步。

说实话,其实算法过程非常简单,实现起来也就个位数行的代码,但是,怎么证明这样的算法是正确的呢?

证明(以下参考https://segmentfault.com/a/1190000016654619):

假设最优解的容器的两个边界在位置 $L$ 和 $R$,高度为 $h(L)$ 和 $h(R)$,那么根据算法,由于每次左右指针中只有一个能移动一步,那么必然有一个先到达两个边界中的一个,

不妨假设是左指针先走到 $L$,即 $l=L$;那么此时右指针必然还没有走到 $R$,即 $r > R$;

那么,只要证明如下假设:接下来的每一步都只能是右指针左移一格,左指针始终不能动。就意味着我们的算法在枚举过程中,必然会在某一步走到最优解,从而使得算法得到的答案正确;

采用反证法:

若上述假设不成立,则意味着如下假设成立:必然存在某一步,是左指针右移一格,而右指针没有动;

则根据以上描述可知,在这一步的时候:$l=L<R<r$ 且 $h(l) = h(L) < h(r)$,由此可知此时边界为 $l$ 和 $r$ 的容器的容量 $S$ 为

$S = h\left( l \right) \times \left( {r - l} \right) = h\left( L \right) \times \left( {r - l} \right)$

然而,此时我们根据 $r > R \Rightarrow r - l > R - l = R - L$ 又有

$S = h\left( L \right) \times \left( {r - l} \right) > \min \left( {h\left( L \right),h\left( R \right)} \right) \times \left( {R - L} \right)$

很明显,$\min \left( {h\left( L \right),h\left( R \right)} \right) \times \left( {R - L} \right)$ 已经是最大的容积了,显然不应当存在不这还大的容器,

因此,证明了假设:当左指针先走到 $L$ 时,接下来的每一步都只能是右指针左移一格,左指针始终不能动;

类似地,也可以证明,当右指针先走到 $R$ 时,接下来的每一步都只能是左指针右移一格,右指针始终不能动;

证毕。

AC代码:

class Solution
{
public:
int maxArea(vector<int>& height)
{
int mx=,l=,r=height.size()-;
while(l<r)
{
mx=max(mx,min(height[l],height[r])*(r-l));
if(height[l]<height[r]) l++;
else r--;
}
return mx;
}
};

LeetCode 11 - 盛最多水的容器 - [双指针暴力]的更多相关文章

  1. Java实现 LeetCode 11 盛最多水的容器

    11. 盛最多水的容器 给定 n 个非负整数 a1,a2,-,an,每个数代表坐标中的一个点 (i, ai) .在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0) ...

  2. 力扣Leetcode 11. 盛最多水的容器

    盛最多水的容器 给你 n 个非负整数 a1,a2,...,an,每个数代表坐标中的一个点 (i, ai) .在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0).找 ...

  3. [LeetCode]11. 盛最多水的容器(双指针)

    题目 给定 n 个非负整数 a1,a2,...,an,每个数代表坐标中的一个点 (i, ai) .在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0).找出其中的两 ...

  4. Leetcode 11.盛最多水的容器 By Python

    给定 n 个非负整数 a1,a2,...,an,每个数代表坐标中的一个点 (i, ai) .在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0).找出其中的两条线, ...

  5. LeetCode 11. 盛最多水的容器(Container With Most Water)

    题目描述 给定 n 个非负整数 a1,a2,...,an,每个数代表坐标中的一个点 (i, ai) .画 n 条垂直线,使得垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0).找出其中的两 ...

  6. LeetCode:盛最多水的容器【11】

    LeetCode:盛最多水的容器[11] 题目描述 给定 n 个非负整数 a1,a2,...,an,每个数代表坐标中的一个点 (i, ai) .在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为  ...

  7. 【LeetCode】盛最多水的容器【双指针+贪心 寻找最大面积】

    给定 n 个非负整数 a1,a2,...,an,每个数代表坐标中的一个点 (i, ai) .在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0).找出其中的两条线, ...

  8. Leetcode题库——11.盛最多水的容器

    @author: ZZQ @software: PyCharm @file: maxArea.py @time: 2018/10/11 21:47 说明:给定 n 个非负整数 a1,a2,...,an ...

  9. 【LeetCode】11. 盛最多水的容器

    题目 给定 n 个非负整数 a1,a2,...,an,每个数代表坐标中的一个点 (i, ai) .在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0).找出其中的两 ...

随机推荐

  1. Android——SeekBar(拖动条)相关知识总结贴

    Android进度条(ProgressBar)拖动条(SeekBar)星级滑块(RatingBar)的例子 http://www.apkbus.com/android-51326-1-1.html A ...

  2. ios实例开发精品源码文章推荐(8.28)

    iOS源码:游戏引擎-推箱子游戏 <ignore_js_op> http://www.apkbus.com/android-106392-1-11.html iOS源码:进度条-Color ...

  3. 《Redis入门指南(第2版)》读后感

    今天刚刚将此书看完,现在还能记住一些内容,还有一些感慨感想,正好又想写点什么了就随便记录一下吧!也许灵感明天就消失了呢? 首先觉得作者非常的厉害,年纪轻轻的就写出了这么一本非常不错的书籍! 然后就是对 ...

  4. 看不见的攻击面:查看 SQLite 数据库就中招?

    Navicat 客户端存在一个 XSS,在查看表字段时,没有对内容进行处理,导致一个 XSS 问题.利用这个漏洞可以读取敏感文件,比如 /Users/XXXX/.bash_history . 漏洞发现 ...

  5. C#-MVC开发微信应用(2)--微信消息的处理和应答

    微信应用使用场景和商机很多,所以这也是一个技术的方向,因此,有空研究下.学习下微信的相关开发,也就成为SNF完善的必要条件了.本系列文章希望从一个循序渐进的角度上,全面介绍微信的相关开发过程和相关经验 ...

  6. Error loading page Domain: WebKitErrorDomain Error Code: 101

    使用 WebView 组件,loading的过程中出现这个错误. 解决方案: webVIew 里面加 renderError={ (e) => { if (e === 'WebKitErrorD ...

  7. 引导修复软件boot-repair

    因为经常需要安装双系统win10+ubuntu,平时按照先win10,在ubuntu的顺序,是非常顺利的,grub非常智能也非常友好的帮助你双启动这2个系统. 但是,难免会有意外,比如,win10有了 ...

  8. Android——RecycleView

    RecycleView设置点击事件 http://blog.csdn.net/guxiao1201/article/details/40423361

  9. 嵌入式开发之hi3519---lvds ,mipi,camera sensor,/DVI/HDMI Interface

    http://blog.csdn.net/mao0514/article/details/54015466

  10. #Java学习之路——基础阶段二(第十篇)

    我的学习阶段是跟着CZBK黑马的双源课程,学习目标以及博客是为了审查自己的学习情况,毕竟看一遍,敲一遍,和自己归纳总结一遍有着很大的区别,在此期间我会参杂Java疯狂讲义(第四版)里面的内容. 前言: ...