HDU 6049 17多校2 Sdjpx Is Happy(思维题difficult)
1.He can divides soldiers into K disjoint non-empty subarrays.
2.He can sort a subarray many times untill a subarray is sorted in increasing order.
3.He can choose just two subarrays and change thier positions between themselves.
Consider A = [1 5 4 3 2] and P = 2. A possible soldiers into K = 4 disjoint subarrays is:A1 = [1],A2 = [5],A3 = [4],A4 = [3 2],After Sorting Each Subarray:A1 = [1],A2 = [5],A3 = [4],A4 = [2 3],After swapping A4 and A2:A1 = [1],A2 = [2 3],A3 = [4],A4 = [5].
But he wants to know for a fixed permutation ,what is the the maximum number of K?
Notice: every soldier has a distinct number from 1~n.There are no more than 10 cases in the input.
For every case:
Next line is n.
Next line is the number for the n soildiers.
Every case a line.
Test1: Same as walk through in the statement. Test2: [4 5] [1 2 3] Swap the 2 blocks: [1 2 3] [4 5].
#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
using namespace std;
#define MAXN 3005 int a[MAXN],res,n;
int mi[MAXN][MAXN],mx[MAXN][MAXN];
//mi[i][j]表示从i到j的最小值,mx[i][j]表示从i到j的最大值
int f[MAXN][MAXN],r[MAXN];
//f[i][j]表示从i到j可以分成的区间数,r[i]表示最近一次从i开始的区间的右端(方便更新) void init()//第一步,分块
{
memset(mi,,sizeof(mi));
memset(mx,,sizeof(mx));
memset(f,,sizeof(f));
memset(r,,sizeof(r));
for(int i=;i<=n;i++)
{
mi[i][i]=a[i];
mx[i][i]=a[i];
f[i][i]=;
r[i]=i;
}
//为mi,mx赋值
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
{
mx[i][j]=max(a[j],mx[i][j-]);
mi[i][j]=min(a[j],mi[i][j-]);
}
//为f数组赋值
for(int t=;t<=n;t++)//t在枚举区间长度
for(int i=;i+t-<=n;i++)
{
int j=i+t-;
//不是连续的一段无法分区间
if(mx[i][j]-mi[i][j]!=t-)
f[i][j]=;
else
{
//j一定大于r[i]
if(mi[i][r[i]]>mi[i][j])
f[i][j]=;
else
f[i][j]=f[i][r[i]]+f[r[i]+][j];
r[i]=j;//这个r数组很精华
}
}
} void solve()//第二步,枚举找交换区间
{
int k;
res=max(,f[][n]);//WA点,一开始写成res=1就WA了
//先枚举seg_a
for(int i=;i<=n;i++)
for(int j=i;j<=n;j++)
{
//满足条件才能继续枚举seg_b
if(i==||(f[][i-]!=&&mi[][i-]==))
{
k=mx[i][j];
if(f[i][j]&&(k==n||(f[k+][n]!=&&mx[k+][n]==n)))
{
for(int t=j+;t<=k;t++)
{
if(f[t][k]&&mi[t][k]==i)
{
//printf("%d %d %d %d %d\n",i,j,t,k,f[1][i-1]+1+f[j+1][t-1]+1+f[k+1][n]);
res=max(res,f[][i-]++f[j+][t-]++f[k+][n]);
}
}
}
}
}
} int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(int i=;i<=n;i++)
scanf("%d",&a[i]);
init();
solve();
printf("%d\n",res);
}
return ; }
HDU 6049 17多校2 Sdjpx Is Happy(思维题difficult)的更多相关文章
- HDU 6140 17多校8 Hybrid Crystals(思维题)
题目传送: Hybrid Crystals Problem Description > Kyber crystals, also called the living crystal or sim ...
- HDU 6034 17多校1 Balala Power!(思维 排序)
Problem Description Talented Mr.Tang has n strings consisting of only lower case characters. He want ...
- HDU 6143 17多校8 Killer Names(组合数学)
题目传送:Killer Names Problem Description > Galen Marek, codenamed Starkiller, was a male Human appre ...
- HDU 6045 17多校2 Is Derek lying?
题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=6045 Time Limit: 3000/1000 MS (Java/Others) Memory ...
- HDU 6124 17多校7 Euler theorem(简单思维题)
Problem Description HazelFan is given two positive integers a,b, and he wants to calculate amodb. Bu ...
- HDU 3130 17多校7 Kolakoski(思维简单)
Problem Description This is Kolakosiki sequence: 1,2,2,1,1,2,1,2,2,1,2,2,1,1,2,1,1,2,2,1……. This seq ...
- HDU 6038 17多校1 Function(找循环节/环)
Problem Description You are given a permutation a from 0 to n−1 and a permutation b from 0 to m−1. D ...
- HDU 6103 17多校6 Kirinriki(双指针维护)
Problem Description We define the distance of two strings A and B with same length n isdisA,B=∑i=0n− ...
- HDU 6098 17多校6 Inversion(思维+优化)
Problem Description Give an array A, the index starts from 1.Now we want to know Bi=maxi∤jAj , i≥2. ...
随机推荐
- java 静态代理和动态代理
代理模式 一.概述 代理是一种模式,提供了对目标对象的间接访问方式,即通过代理访问目标对象.如此便于在目标实现的基础上增加额外的功能操作,前拦截,后拦截等,以满足自身的业务需求,同时代理模式便于扩展目 ...
- python-爬虫框架scrapy
一 介绍 Scrapy一个开源和协作的框架,其最初是为了页面抓取 (更确切来说, 网络抓取 )所设计的,使用它可以以快速.简单.可扩展的方式从网站中提取所需的数据.但目前Scrapy的用途十分广泛,可 ...
- leetcode-algorithms-28 Implement strStr()
leetcode-algorithms-28 Implement strStr() mplement strStr(). Return the index of the first occurrenc ...
- HDU-2767-tarjan/Kosaraju求scc
http://acm.hdu.edu.cn/showproblem.php?pid=2767 问最少添加几条边使得图为强连通. tarjan跑一下,然后对强连通分量缩点,找下此时出度为零和入度为零的点 ...
- flask-系统介绍及环境搭建1
1.系统介绍 前台首页-电影筛选-电影列表- 播放详情-评论:收藏-搜索-注册-登录-会员中心(修改会员资料,查看评论记录,登录日志,收藏电影). 后台-标签-电影管理-预告-会员-评论-收藏-日志- ...
- 2017-3-29/HTTP协议1
1. 讲讲你对http的理解. HTTP协议(HyperText Transfer Protocol,超文本传输协议)是用于从WWW服务器传输超文本到本地浏览器的传输协议,是一个客户端和服务器端请求和 ...
- 一、Redis数据备份与恢复
Redis里的数据都是保存在内存中,关闭服务器必须进行数据备份. 1.Redis的数据持久化 bgsave做镜像全量持久化,AOF做增量持久化. bgsave的原理:fork和cow(copy on ...
- ActiveMQ异步分发消息
org.apache.activemq.ActiveMQConnection 类中有个参数: protected boolean dispatchAsync=true; 这个参数的含义到底是什么? 使 ...
- Google Protocol Buffers 反序列化 转
http://www.cnblogs.com/royenhome/archive/2010/10/30/1865256.html 本文作为结束篇,会稍微介绍下怎么反序列化GoogleBuffer数 ...
- ci框架多语言切换
1.多语言切换首先配置config文件默认语言 2.创建自己的语言包:language chinese english目录下的语言包文件名必须以 xx_lang.php 可根据自己的需求创建数组: ...