Problem Description
Sdjpx is a powful man,he controls a big country.There are n soldiers numbered 1~n(1<=n<=3000).But there is a big problem for him.He wants soldiers sorted in increasing order.He find a way to sort,but there three rules to obey.
1.He can divides soldiers into K disjoint non-empty subarrays.
2.He can sort a subarray many times untill a subarray is sorted in increasing order.
3.He can choose just two subarrays and change thier positions between themselves.
Consider A = [1 5 4 3 2] and P = 2. A possible soldiers into K = 4 disjoint subarrays is:A1 = [1],A2 = [5],A3 = [4],A4 = [3 2],After Sorting Each Subarray:A1 = [1],A2 = [5],A3 = [4],A4 = [2 3],After swapping A4 and A2:A1 = [1],A2 = [2 3],A3 = [4],A4 = [5].
But he wants to know for a fixed permutation ,what is the the maximum number of K?
Notice: every soldier has a distinct number from 1~n.There are no more than 10 cases in the input.
 
Input
First line is the number of cases.
For every case:
Next line is n.
Next line is the number for the n soildiers.
 
Output
the maximum number of K.
Every case a line.
 
Sample Input
2
5
1 5 4 3 2
5
4 5 1 2 3
 
Sample Output
4
2

Hint

Test1: Same as walk through in the statement. Test2: [4 5] [1 2 3] Swap the 2 blocks: [1 2 3] [4 5].

 
启发博客:http://www.cnblogs.com/FxxL/p/7253028.html
题意: 给出n,一个1~n的排列,要求进行三步操作
           1.分区(随便分)
           2.对分好的每一个区内进行从小到大的排序
           3.挑选两个区进行交换(只能挑选两个,只能交换易次),使得序列的顺序变成1-n;
          问在满足要求的情况下,最多能分成多少区
题解:第一步是分区,第二步是枚举。
          分区是开了一个f[i][j]数组用来记录,i-j区间里可以有多少满足要求的段,用到mx,mi,r来辅助,具体可见代码注释。
          枚举是枚举要交换的两个区间,每次更新答案的最大值。设左右区间分别为seg_a,seg_b。
          seg_a要满足:第一段或者之前包括1~i-1的所有数字,当然自身不能为空
                                把这个区间最大的数定义为k,根据k来枚举seg_b,k是seg_b的右端点
                                还需满足k==n或者k+1及以后的所有数字包含k+1~n
          seg_b要满足:k是seg_b的右端点,自身不为空,要保证它的最小值是i
          像上述这样来做即可,当然中间会有一些不小心造成的WA点,大家注意即可
 
 #include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
using namespace std;
#define MAXN 3005 int a[MAXN],res,n;
int mi[MAXN][MAXN],mx[MAXN][MAXN];
//mi[i][j]表示从i到j的最小值,mx[i][j]表示从i到j的最大值
int f[MAXN][MAXN],r[MAXN];
//f[i][j]表示从i到j可以分成的区间数,r[i]表示最近一次从i开始的区间的右端(方便更新) void init()//第一步,分块
{
memset(mi,,sizeof(mi));
memset(mx,,sizeof(mx));
memset(f,,sizeof(f));
memset(r,,sizeof(r));
for(int i=;i<=n;i++)
{
mi[i][i]=a[i];
mx[i][i]=a[i];
f[i][i]=;
r[i]=i;
}
//为mi,mx赋值
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
{
mx[i][j]=max(a[j],mx[i][j-]);
mi[i][j]=min(a[j],mi[i][j-]);
}
//为f数组赋值
for(int t=;t<=n;t++)//t在枚举区间长度
for(int i=;i+t-<=n;i++)
{
int j=i+t-;
//不是连续的一段无法分区间
if(mx[i][j]-mi[i][j]!=t-)
f[i][j]=;
else
{
//j一定大于r[i]
if(mi[i][r[i]]>mi[i][j])
f[i][j]=;
else
f[i][j]=f[i][r[i]]+f[r[i]+][j];
r[i]=j;//这个r数组很精华
}
}
} void solve()//第二步,枚举找交换区间
{
int k;
res=max(,f[][n]);//WA点,一开始写成res=1就WA了
//先枚举seg_a
for(int i=;i<=n;i++)
for(int j=i;j<=n;j++)
{
//满足条件才能继续枚举seg_b
if(i==||(f[][i-]!=&&mi[][i-]==))
{
k=mx[i][j];
if(f[i][j]&&(k==n||(f[k+][n]!=&&mx[k+][n]==n)))
{
for(int t=j+;t<=k;t++)
{
if(f[t][k]&&mi[t][k]==i)
{
//printf("%d %d %d %d %d\n",i,j,t,k,f[1][i-1]+1+f[j+1][t-1]+1+f[k+1][n]);
res=max(res,f[][i-]++f[j+][t-]++f[k+][n]);
}
}
}
}
}
} int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(int i=;i<=n;i++)
scanf("%d",&a[i]);
init();
solve();
printf("%d\n",res);
}
return ; }
             
 

HDU 6049 17多校2 Sdjpx Is Happy(思维题difficult)的更多相关文章

  1. HDU 6140 17多校8 Hybrid Crystals(思维题)

    题目传送: Hybrid Crystals Problem Description > Kyber crystals, also called the living crystal or sim ...

  2. HDU 6034 17多校1 Balala Power!(思维 排序)

    Problem Description Talented Mr.Tang has n strings consisting of only lower case characters. He want ...

  3. HDU 6143 17多校8 Killer Names(组合数学)

    题目传送:Killer Names Problem Description > Galen Marek, codenamed Starkiller, was a male Human appre ...

  4. HDU 6045 17多校2 Is Derek lying?

    题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=6045 Time Limit: 3000/1000 MS (Java/Others)    Memory ...

  5. HDU 6124 17多校7 Euler theorem(简单思维题)

    Problem Description HazelFan is given two positive integers a,b, and he wants to calculate amodb. Bu ...

  6. HDU 3130 17多校7 Kolakoski(思维简单)

    Problem Description This is Kolakosiki sequence: 1,2,2,1,1,2,1,2,2,1,2,2,1,1,2,1,1,2,2,1……. This seq ...

  7. HDU 6038 17多校1 Function(找循环节/环)

    Problem Description You are given a permutation a from 0 to n−1 and a permutation b from 0 to m−1. D ...

  8. HDU 6103 17多校6 Kirinriki(双指针维护)

    Problem Description We define the distance of two strings A and B with same length n isdisA,B=∑i=0n− ...

  9. HDU 6098 17多校6 Inversion(思维+优化)

    Problem Description Give an array A, the index starts from 1.Now we want to know Bi=maxi∤jAj , i≥2. ...

随机推荐

  1. python-day72--django实现的cookie/session

    COOKIE 与 SESSION 一.概念cookie不属于http协议范围,由于http协议无法保持状态,但实际情况,我们却又需要“保持状态”,因此cookie就是在这样一个场景下诞生.cookie ...

  2. Oracle 11.2.0.4.0 Dataguard部署和日常维护(5)-Datauard 主备切换和故障转移篇

    1. dataguard主备切换   1.1. 查看当前主备库是否具备切换条件 on slave select sequence#,first_time,next_time,archived,appl ...

  3. CompareTo 基于的排序算法

    CompareTo 基于的排序算法(高级排序) 这个是今天学习MapReduce时发现的,自定义类后实现了WritableComparable<>接口后实现了接口中的compareTo方法 ...

  4. 2015-09-17html课程总结2+了解css

    7.多媒体 ①滚动字幕 <marquee>滚动的内容...</marquee> ②属性:align-----对齐方式(top middle  bottom) scroll--- ...

  5. git找回本地误删的文件

    不小心把本地的文件删除了一个? 想从仓库git pull 下拉? 对不起,这是不行的,虽然不知道为什么,但是我告诉你怎么回复这个文件. 首先,我们先用git status 看看工作区的变化 $ git ...

  6. 微信小程序 无限加载 上拉加载更多

    加载更多,其实就是再次向接口发送请求,把返回的数据,追加到渲染页面的数组里的过程,具体实现实例如下: demo.js // pages/project/project.js const app = g ...

  7. 设计模式:java及spring观察者模式(有利于代码解耦)

    http://www.cnblogs.com/softidea/p/5716870.html 什么是ApplicationContext? 它是Spring的核心,Context我们通常解释为上下文环 ...

  8. vs2017 Mariadb/mysql之旅

    记录vs2017使用 ef6+mysql的开发 填坑之旅.我的环境 vm+centos7+ docker-ce+mariadb+vs2017 总的原则是MySql.Data.Entity 要和 mys ...

  9. Uva LA 3177 - Beijing Guards 贪心,特例分析,判断器+二分,记录区间内状态数目来染色 难度: 3

    题目 https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_pr ...

  10. UVA 11990 `Dynamic'' Inversion CDQ分治, 归并排序, 树状数组, 尺取法, 三偏序统计 难度: 2

    题目 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&a ...