Problem Description
Sdjpx is a powful man,he controls a big country.There are n soldiers numbered 1~n(1<=n<=3000).But there is a big problem for him.He wants soldiers sorted in increasing order.He find a way to sort,but there three rules to obey.
1.He can divides soldiers into K disjoint non-empty subarrays.
2.He can sort a subarray many times untill a subarray is sorted in increasing order.
3.He can choose just two subarrays and change thier positions between themselves.
Consider A = [1 5 4 3 2] and P = 2. A possible soldiers into K = 4 disjoint subarrays is:A1 = [1],A2 = [5],A3 = [4],A4 = [3 2],After Sorting Each Subarray:A1 = [1],A2 = [5],A3 = [4],A4 = [2 3],After swapping A4 and A2:A1 = [1],A2 = [2 3],A3 = [4],A4 = [5].
But he wants to know for a fixed permutation ,what is the the maximum number of K?
Notice: every soldier has a distinct number from 1~n.There are no more than 10 cases in the input.
 
Input
First line is the number of cases.
For every case:
Next line is n.
Next line is the number for the n soildiers.
 
Output
the maximum number of K.
Every case a line.
 
Sample Input
2
5
1 5 4 3 2
5
4 5 1 2 3
 
Sample Output
4
2

Hint

Test1: Same as walk through in the statement. Test2: [4 5] [1 2 3] Swap the 2 blocks: [1 2 3] [4 5].

 
启发博客:http://www.cnblogs.com/FxxL/p/7253028.html
题意: 给出n,一个1~n的排列,要求进行三步操作
           1.分区(随便分)
           2.对分好的每一个区内进行从小到大的排序
           3.挑选两个区进行交换(只能挑选两个,只能交换易次),使得序列的顺序变成1-n;
          问在满足要求的情况下,最多能分成多少区
题解:第一步是分区,第二步是枚举。
          分区是开了一个f[i][j]数组用来记录,i-j区间里可以有多少满足要求的段,用到mx,mi,r来辅助,具体可见代码注释。
          枚举是枚举要交换的两个区间,每次更新答案的最大值。设左右区间分别为seg_a,seg_b。
          seg_a要满足:第一段或者之前包括1~i-1的所有数字,当然自身不能为空
                                把这个区间最大的数定义为k,根据k来枚举seg_b,k是seg_b的右端点
                                还需满足k==n或者k+1及以后的所有数字包含k+1~n
          seg_b要满足:k是seg_b的右端点,自身不为空,要保证它的最小值是i
          像上述这样来做即可,当然中间会有一些不小心造成的WA点,大家注意即可
 
 #include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
using namespace std;
#define MAXN 3005 int a[MAXN],res,n;
int mi[MAXN][MAXN],mx[MAXN][MAXN];
//mi[i][j]表示从i到j的最小值,mx[i][j]表示从i到j的最大值
int f[MAXN][MAXN],r[MAXN];
//f[i][j]表示从i到j可以分成的区间数,r[i]表示最近一次从i开始的区间的右端(方便更新) void init()//第一步,分块
{
memset(mi,,sizeof(mi));
memset(mx,,sizeof(mx));
memset(f,,sizeof(f));
memset(r,,sizeof(r));
for(int i=;i<=n;i++)
{
mi[i][i]=a[i];
mx[i][i]=a[i];
f[i][i]=;
r[i]=i;
}
//为mi,mx赋值
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
{
mx[i][j]=max(a[j],mx[i][j-]);
mi[i][j]=min(a[j],mi[i][j-]);
}
//为f数组赋值
for(int t=;t<=n;t++)//t在枚举区间长度
for(int i=;i+t-<=n;i++)
{
int j=i+t-;
//不是连续的一段无法分区间
if(mx[i][j]-mi[i][j]!=t-)
f[i][j]=;
else
{
//j一定大于r[i]
if(mi[i][r[i]]>mi[i][j])
f[i][j]=;
else
f[i][j]=f[i][r[i]]+f[r[i]+][j];
r[i]=j;//这个r数组很精华
}
}
} void solve()//第二步,枚举找交换区间
{
int k;
res=max(,f[][n]);//WA点,一开始写成res=1就WA了
//先枚举seg_a
for(int i=;i<=n;i++)
for(int j=i;j<=n;j++)
{
//满足条件才能继续枚举seg_b
if(i==||(f[][i-]!=&&mi[][i-]==))
{
k=mx[i][j];
if(f[i][j]&&(k==n||(f[k+][n]!=&&mx[k+][n]==n)))
{
for(int t=j+;t<=k;t++)
{
if(f[t][k]&&mi[t][k]==i)
{
//printf("%d %d %d %d %d\n",i,j,t,k,f[1][i-1]+1+f[j+1][t-1]+1+f[k+1][n]);
res=max(res,f[][i-]++f[j+][t-]++f[k+][n]);
}
}
}
}
}
} int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(int i=;i<=n;i++)
scanf("%d",&a[i]);
init();
solve();
printf("%d\n",res);
}
return ; }
             
 

HDU 6049 17多校2 Sdjpx Is Happy(思维题difficult)的更多相关文章

  1. HDU 6140 17多校8 Hybrid Crystals(思维题)

    题目传送: Hybrid Crystals Problem Description > Kyber crystals, also called the living crystal or sim ...

  2. HDU 6034 17多校1 Balala Power!(思维 排序)

    Problem Description Talented Mr.Tang has n strings consisting of only lower case characters. He want ...

  3. HDU 6143 17多校8 Killer Names(组合数学)

    题目传送:Killer Names Problem Description > Galen Marek, codenamed Starkiller, was a male Human appre ...

  4. HDU 6045 17多校2 Is Derek lying?

    题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=6045 Time Limit: 3000/1000 MS (Java/Others)    Memory ...

  5. HDU 6124 17多校7 Euler theorem(简单思维题)

    Problem Description HazelFan is given two positive integers a,b, and he wants to calculate amodb. Bu ...

  6. HDU 3130 17多校7 Kolakoski(思维简单)

    Problem Description This is Kolakosiki sequence: 1,2,2,1,1,2,1,2,2,1,2,2,1,1,2,1,1,2,2,1……. This seq ...

  7. HDU 6038 17多校1 Function(找循环节/环)

    Problem Description You are given a permutation a from 0 to n−1 and a permutation b from 0 to m−1. D ...

  8. HDU 6103 17多校6 Kirinriki(双指针维护)

    Problem Description We define the distance of two strings A and B with same length n isdisA,B=∑i=0n− ...

  9. HDU 6098 17多校6 Inversion(思维+优化)

    Problem Description Give an array A, the index starts from 1.Now we want to know Bi=maxi∤jAj , i≥2. ...

随机推荐

  1. java 静态代理和动态代理

    代理模式 一.概述 代理是一种模式,提供了对目标对象的间接访问方式,即通过代理访问目标对象.如此便于在目标实现的基础上增加额外的功能操作,前拦截,后拦截等,以满足自身的业务需求,同时代理模式便于扩展目 ...

  2. python-爬虫框架scrapy

    一 介绍 Scrapy一个开源和协作的框架,其最初是为了页面抓取 (更确切来说, 网络抓取 )所设计的,使用它可以以快速.简单.可扩展的方式从网站中提取所需的数据.但目前Scrapy的用途十分广泛,可 ...

  3. leetcode-algorithms-28 Implement strStr()

    leetcode-algorithms-28 Implement strStr() mplement strStr(). Return the index of the first occurrenc ...

  4. HDU-2767-tarjan/Kosaraju求scc

    http://acm.hdu.edu.cn/showproblem.php?pid=2767 问最少添加几条边使得图为强连通. tarjan跑一下,然后对强连通分量缩点,找下此时出度为零和入度为零的点 ...

  5. flask-系统介绍及环境搭建1

    1.系统介绍 前台首页-电影筛选-电影列表- 播放详情-评论:收藏-搜索-注册-登录-会员中心(修改会员资料,查看评论记录,登录日志,收藏电影). 后台-标签-电影管理-预告-会员-评论-收藏-日志- ...

  6. 2017-3-29/HTTP协议1

    1. 讲讲你对http的理解. HTTP协议(HyperText Transfer Protocol,超文本传输协议)是用于从WWW服务器传输超文本到本地浏览器的传输协议,是一个客户端和服务器端请求和 ...

  7. 一、Redis数据备份与恢复

    Redis里的数据都是保存在内存中,关闭服务器必须进行数据备份. 1.Redis的数据持久化 bgsave做镜像全量持久化,AOF做增量持久化. bgsave的原理:fork和cow(copy on  ...

  8. ActiveMQ异步分发消息

    org.apache.activemq.ActiveMQConnection 类中有个参数: protected boolean dispatchAsync=true; 这个参数的含义到底是什么? 使 ...

  9. Google Protocol Buffers 反序列化 转

    http://www.cnblogs.com/royenhome/archive/2010/10/30/1865256.html   本文作为结束篇,会稍微介绍下怎么反序列化GoogleBuffer数 ...

  10. ci框架多语言切换

    1.多语言切换首先配置config文件默认语言 2.创建自己的语言包:language chinese english目录下的语言包文件名必须以  xx_lang.php 可根据自己的需求创建数组: ...