1、$A_{1}=2,A_{2}=3,A_{n}=A_{n-2}+A_{n-1}-1$。给出数字$n$,将其表示成若干个$A$中的不同元素的和。

思路:设$B_{n}=A_{n}-1$,那么有$B_{n}=B_{n-2}+B_{n-1},B_{1}=1,B_{2}=2$。那么$B$其实是斐波那契数列。设将$n$表示成$k$个$A$中的元素,那么就等同于将$n-k$表示成$k$个$B$中不同的元素。这个分两步进行:(1)将$n-k$表示成最少的$B$中元素的和,(2)如果这个个数大于$k$那么无解。若小于$k$,可以将某个数字$x=B_{t}$替换为$B_{t-2}+B_{t-1}$以增加一个数字。

#include <stdio.h>
#include <string.h>
#include <string>
#include <iostream>
#include <vector>
#include <set>
#include <map>
#include <queue>
#include <algorithm>
#include <stack>
using namespace std; long long f[100];
int n; void init(long long x)
{
f[1]=1;
f[2]=2;
for(int i=3;i<100;++i)
{
f[i]=f[i-1]+f[i-2];
if(f[i]>x)
{
n=i-1; break;
}
}
} vector<int> ans; int check(int k,long long x)
{
if(x<=0) return 0;
ans.clear();
while(x>0)
{
for(int i=n;i>=1;--i) if(x>=f[i])
{
ans.push_back(i);
x-=f[i];
break;
}
}
if((int)ans.size()>k) return 0;
while((int)ans.size()<k)
{
sort(ans.begin(),ans.end());
int ok=0;
for(int i=0;i<(int)ans.size();++i)
{
if((i==0&&ans[0]>=3)||(i!=0&&ans[i]-ans[i-1]>=3))
{
ans.push_back(ans[i]-1);
ans[i]-=2;
ok=1;
break;
}
}
if(!ok) return 0;
}
return 1;
} class AlmostFibonacciKnapsack
{
public:
vector<int> getIndices(long long x)
{
init(x);
for(int i=1;i<=n;++i) if(check(i,x-i)) return ans;
return vector<int>{-1};
}
};

 2、给出一个二维整数数组$A[n][n]$。构造一个$n$个顶点的带权无向图$G$,使得对于$G$中任意两点$i,j$,它们之间的最小割等于$A[i][j]$。

思路:最小割的一个性质是:对于由一个割$C$将$G$分成的两个点集$P,Q$,对于$P,Q$内任意一点$p,q$,它们之间的最小割小于等于$|C|$。所以,初始化所有顶点是一个集合$S$。然后每一步重复下面操作:

(1)若$S$的大小小于2结束;否则找到最小的$t=A[i][j],i\in S,j\in S$

(2)初始化集合$S_{0},S_{1}$为空,将$S$中第一个元素$x_{0}$放入$S_{0}$.然后对于$S$中任意一个其他元素$x_{i}$,若$A[x_{0}][x_{i}]>t$则将$x_{i}$放入$S_{0}$,否则将其放入$S_{1}$

(3)对于$S_{0},S_{1}$中的元素$x,y$,若$A[x][y]!=t$,则无解。

(4)递归判断$S_{0},S_{1}$

#include <stdio.h>
#include <string.h>
#include <string>
#include <iostream>
#include <vector>
#include <set>
#include <map>
#include <queue>
#include <algorithm>
#include <stack>
using namespace std; const int N=2005;
const int INF=1000000005; class AllGraphCuts
{
int n;
int g[55][55];
vector<int> ans; void add(int u,int v,int w)
{
ans.push_back(w*n*n+u*n+v);
} int dfs(vector<int> S)
{
if(S.size()<=1) return 1;
int tmp=INF;
for(int i=0;i<(int)S.size();++i) for(int j=0;j<(int)S.size();++j)
{
if(i!=j&&g[S[i]][S[j]]<tmp) tmp=g[S[i]][S[j]];
}
vector<int> S0,S1;
S0.push_back(S[0]);
for(int i=1;i<(int)S.size();++i)
{
if(g[S[0]][S[i]]>tmp) S0.push_back(S[i]);
else S1.push_back(S[i]);
}
if(S0.empty()||S1.empty()) return 0;
for(int i=0;i<(int)S0.size();++i) for(int j=0;j<(int)S1.size();++j)
{
if(g[S0[i]][S1[j]]!=tmp) return 0;
}
add(S0[0],S1[0],tmp);
return dfs(S0)&&dfs(S1);
} public:
vector<int> findGraph(vector<int> x)
{
n=1;
while(n*n!=(int)x.size()) ++n;
for(int i=0;i<n;++i) for(int j=0;j<n;++j) g[i][j]=x[i*n+j];
for(int i=0;i<n;++i) for(int j=0;j<n;++j)
{
if((i==j&&g[i][j]!=0)||(g[i][j]!=g[j][i])) return vector<int>{-1};
}
vector<int> S;
for(int i=0;i<n;++i) S.push_back(i);
if(dfs(S)) return ans;
return vector<int>{-1};
}
};

  

topcoder srm 687 div1的更多相关文章

  1. Topcoder SRM 643 Div1 250<peter_pan>

    Topcoder SRM 643 Div1 250 Problem 给一个整数N,再给一个vector<long long>v; N可以表示成若干个素数的乘积,N=p0*p1*p2*... ...

  2. Topcoder Srm 726 Div1 Hard

    Topcoder Srm 726 Div1 Hard 解题思路: 问题可以看做一个二分图,左边一个点向右边一段区间连边,匹配了左边一个点就能获得对应的权值,最大化所得到的权值的和. 然后可以证明一个结 ...

  3. topcoder srm 714 div1

    problem1 link 倒着想.每次添加一个右括号再添加一个左括号,直到还原.那么每次的右括号的选择范围为当前左括号后面的右括号减去后面已经使用的右括号. problem2 link 令$h(x) ...

  4. topcoder srm 738 div1 FindThePerfectTriangle(枚举)

    Problem Statement      You are given the ints perimeter and area. Your task is to find a triangle wi ...

  5. Topcoder SRM 602 div1题解

    打卡- Easy(250pts): 题目大意:rating2200及以上和2200以下的颜色是不一样的(我就是属于那个颜色比较菜的),有个人初始rating为X,然后每一场比赛他的rating如果增加 ...

  6. Topcoder SRM 627 div1 HappyLettersDiv1 : 字符串

    Problem Statement      The Happy Letter game is played as follows: At the beginning, several players ...

  7. Topcoder SRM 584 DIV1 600

    思路太繁琐了 ,实在不想解释了 代码: #include<iostream> #include<cstdio> #include<string> #include& ...

  8. TopCoder SRM 605 DIV1

    604的题解还没有写出来呢.先上605的. 代码去practice房间找. 说思路. A: 贪心,对于每个类型的正值求和,如果没有正值就取最大值,按着求出的值排序,枚举选多少个类型. B: 很明显是d ...

  9. topcoder srm 575 div1

    problem1 link 如果$k$是先手必胜那么$f(k)=1$否则$f(k)=0$ 通过对前面小的数字的计算可以发现:(1)$f(2k+1)=0$,(2)$f(2^{2k+1})=0$,(3)其 ...

随机推荐

  1. 一群猴子排成一圈,按1,2,...,n依次编号

    朋友面试遇到的题,网上大部分都是直接往数组后push的解法,不考虑,下面这个方法看起来很简单,但是我理解不了,有大牛懂得给解释一下 朋友面试遇到的题,网上大部分都是直接往数组后push的解法,不考虑, ...

  2. vmvare 将主机的文件复制到虚拟机系统中 安装WMware tools

    在虚拟机里的ubuntu这里找到VMware tools包

  3. 在caffe-ssd的环境搭建中遇到报错信息:Makefile:588: recipe for target '.build_release/cuda/src/caffe/layers/softmax_loss_layer.o' failed

    错误原因: 1.计算机没有安装GPU 2.有GPU但是NVCCFLAGS设置错误 解决方法: 1.对没有GPU的计算机,需要将Makefile中的CPU之前的#注释去掉,是的caffe运行的处理器进行 ...

  4. sqlserver恢复数据库被挂起

    已测试过,直接执行此句后,数据库恢复原状态.数据不会丢失.具体是什么意思,暂时没来得及搞明白 RESTORE database dbname with norecovery

  5. valueError: This solver needs samples of at least 2 classes in the data, but the data contains only one class: 0

    问题描述:执行下面的代码,报错valueError: This solver needs samples of at least 2 classes in the data, but the data ...

  6. sitecore系统教程之部署架构方式分析

    当您第一次部署Sitecore体验平台时,您可以选择三种主要体系结构选项: 内部部署服务器解决方案 混合服务器方案 云服务器解决方案 您是选择将Sitecore作为云,内部部署还是混合解决方案运行,取 ...

  7. 更换tomcat运行日志目录

    1.在tomcat安装文件夹的bin目录下,修改catalina.sh,改变catalina.out的输出目录 CATALINA_OUT="$CATALINA_BASE"/logs ...

  8. 20155228 2016-2017-2 《Java程序设计》第2周学习总结

    20155228 2006-2007-2 <Java程序设计>第2周学习总结 教材学习内容总结 类型 Java可以区分为基本类型和类类型(或称参考类型).对于基本类型,使用时得考虑一下数据 ...

  9. [openjudge-动态规划]摘花生

    题目描述 描述 Hello Kitty 想摘点花生送给她喜欢的米老鼠.她来到一片有网格状道路的矩形花生地(如下图),从西北角进去,东南角出来.地里每个道路的交叉点上都有种着一株花生苗,上面有若干颗花生 ...

  10. Spring boot 入门配置

    1,maven 的pom 文件里面引入 <!-- spring boot 父节点依赖,引入这个之后相关的引入就不需要添加version配置,spring boot会自动选择最合适的版本进行添加. ...