1、$A_{1}=2,A_{2}=3,A_{n}=A_{n-2}+A_{n-1}-1$。给出数字$n$,将其表示成若干个$A$中的不同元素的和。

思路:设$B_{n}=A_{n}-1$,那么有$B_{n}=B_{n-2}+B_{n-1},B_{1}=1,B_{2}=2$。那么$B$其实是斐波那契数列。设将$n$表示成$k$个$A$中的元素,那么就等同于将$n-k$表示成$k$个$B$中不同的元素。这个分两步进行:(1)将$n-k$表示成最少的$B$中元素的和,(2)如果这个个数大于$k$那么无解。若小于$k$,可以将某个数字$x=B_{t}$替换为$B_{t-2}+B_{t-1}$以增加一个数字。

#include <stdio.h>
#include <string.h>
#include <string>
#include <iostream>
#include <vector>
#include <set>
#include <map>
#include <queue>
#include <algorithm>
#include <stack>
using namespace std; long long f[100];
int n; void init(long long x)
{
f[1]=1;
f[2]=2;
for(int i=3;i<100;++i)
{
f[i]=f[i-1]+f[i-2];
if(f[i]>x)
{
n=i-1; break;
}
}
} vector<int> ans; int check(int k,long long x)
{
if(x<=0) return 0;
ans.clear();
while(x>0)
{
for(int i=n;i>=1;--i) if(x>=f[i])
{
ans.push_back(i);
x-=f[i];
break;
}
}
if((int)ans.size()>k) return 0;
while((int)ans.size()<k)
{
sort(ans.begin(),ans.end());
int ok=0;
for(int i=0;i<(int)ans.size();++i)
{
if((i==0&&ans[0]>=3)||(i!=0&&ans[i]-ans[i-1]>=3))
{
ans.push_back(ans[i]-1);
ans[i]-=2;
ok=1;
break;
}
}
if(!ok) return 0;
}
return 1;
} class AlmostFibonacciKnapsack
{
public:
vector<int> getIndices(long long x)
{
init(x);
for(int i=1;i<=n;++i) if(check(i,x-i)) return ans;
return vector<int>{-1};
}
};

 2、给出一个二维整数数组$A[n][n]$。构造一个$n$个顶点的带权无向图$G$,使得对于$G$中任意两点$i,j$,它们之间的最小割等于$A[i][j]$。

思路:最小割的一个性质是:对于由一个割$C$将$G$分成的两个点集$P,Q$,对于$P,Q$内任意一点$p,q$,它们之间的最小割小于等于$|C|$。所以,初始化所有顶点是一个集合$S$。然后每一步重复下面操作:

(1)若$S$的大小小于2结束;否则找到最小的$t=A[i][j],i\in S,j\in S$

(2)初始化集合$S_{0},S_{1}$为空,将$S$中第一个元素$x_{0}$放入$S_{0}$.然后对于$S$中任意一个其他元素$x_{i}$,若$A[x_{0}][x_{i}]>t$则将$x_{i}$放入$S_{0}$,否则将其放入$S_{1}$

(3)对于$S_{0},S_{1}$中的元素$x,y$,若$A[x][y]!=t$,则无解。

(4)递归判断$S_{0},S_{1}$

#include <stdio.h>
#include <string.h>
#include <string>
#include <iostream>
#include <vector>
#include <set>
#include <map>
#include <queue>
#include <algorithm>
#include <stack>
using namespace std; const int N=2005;
const int INF=1000000005; class AllGraphCuts
{
int n;
int g[55][55];
vector<int> ans; void add(int u,int v,int w)
{
ans.push_back(w*n*n+u*n+v);
} int dfs(vector<int> S)
{
if(S.size()<=1) return 1;
int tmp=INF;
for(int i=0;i<(int)S.size();++i) for(int j=0;j<(int)S.size();++j)
{
if(i!=j&&g[S[i]][S[j]]<tmp) tmp=g[S[i]][S[j]];
}
vector<int> S0,S1;
S0.push_back(S[0]);
for(int i=1;i<(int)S.size();++i)
{
if(g[S[0]][S[i]]>tmp) S0.push_back(S[i]);
else S1.push_back(S[i]);
}
if(S0.empty()||S1.empty()) return 0;
for(int i=0;i<(int)S0.size();++i) for(int j=0;j<(int)S1.size();++j)
{
if(g[S0[i]][S1[j]]!=tmp) return 0;
}
add(S0[0],S1[0],tmp);
return dfs(S0)&&dfs(S1);
} public:
vector<int> findGraph(vector<int> x)
{
n=1;
while(n*n!=(int)x.size()) ++n;
for(int i=0;i<n;++i) for(int j=0;j<n;++j) g[i][j]=x[i*n+j];
for(int i=0;i<n;++i) for(int j=0;j<n;++j)
{
if((i==j&&g[i][j]!=0)||(g[i][j]!=g[j][i])) return vector<int>{-1};
}
vector<int> S;
for(int i=0;i<n;++i) S.push_back(i);
if(dfs(S)) return ans;
return vector<int>{-1};
}
};

  

topcoder srm 687 div1的更多相关文章

  1. Topcoder SRM 643 Div1 250<peter_pan>

    Topcoder SRM 643 Div1 250 Problem 给一个整数N,再给一个vector<long long>v; N可以表示成若干个素数的乘积,N=p0*p1*p2*... ...

  2. Topcoder Srm 726 Div1 Hard

    Topcoder Srm 726 Div1 Hard 解题思路: 问题可以看做一个二分图,左边一个点向右边一段区间连边,匹配了左边一个点就能获得对应的权值,最大化所得到的权值的和. 然后可以证明一个结 ...

  3. topcoder srm 714 div1

    problem1 link 倒着想.每次添加一个右括号再添加一个左括号,直到还原.那么每次的右括号的选择范围为当前左括号后面的右括号减去后面已经使用的右括号. problem2 link 令$h(x) ...

  4. topcoder srm 738 div1 FindThePerfectTriangle(枚举)

    Problem Statement      You are given the ints perimeter and area. Your task is to find a triangle wi ...

  5. Topcoder SRM 602 div1题解

    打卡- Easy(250pts): 题目大意:rating2200及以上和2200以下的颜色是不一样的(我就是属于那个颜色比较菜的),有个人初始rating为X,然后每一场比赛他的rating如果增加 ...

  6. Topcoder SRM 627 div1 HappyLettersDiv1 : 字符串

    Problem Statement      The Happy Letter game is played as follows: At the beginning, several players ...

  7. Topcoder SRM 584 DIV1 600

    思路太繁琐了 ,实在不想解释了 代码: #include<iostream> #include<cstdio> #include<string> #include& ...

  8. TopCoder SRM 605 DIV1

    604的题解还没有写出来呢.先上605的. 代码去practice房间找. 说思路. A: 贪心,对于每个类型的正值求和,如果没有正值就取最大值,按着求出的值排序,枚举选多少个类型. B: 很明显是d ...

  9. topcoder srm 575 div1

    problem1 link 如果$k$是先手必胜那么$f(k)=1$否则$f(k)=0$ 通过对前面小的数字的计算可以发现:(1)$f(2k+1)=0$,(2)$f(2^{2k+1})=0$,(3)其 ...

随机推荐

  1. [转-SSRF]什么是SSRF

    这些天专注了解了SSRF攻击(Server-side Request Forgery,服务器端请求伪造),对这类攻击有了自己的一些总结与看法,老外取这个名字是挺不错的,我很喜欢,这让我想到了CSRF( ...

  2. Ubuntu中使用pip3报错

    使用pip3 出现以下错误: Traceback (most recent call last): File “/usr/bin/pip3”, line 9, in from pip import m ...

  3. expect简介和使用例子

    expect简介和使用例子   expect简介 expect是一款自动化的脚本解释型的工具. expect基于tcl脚本,expect脚本的运行需要tcl的支持. expect对一些需要交互输入的命 ...

  4. C# Dapper 简单实例

    /// <summary> /// 分页信息 /// </summary> public class PageInfo<T>     {         /// & ...

  5. Oracle TNS-01190: The user is not authorized to execute the requested listener command

    今天,在玩 lsnrctl命令,是为了了解Oracle的一些配置. 当执行 show inbound_connect_timeout 命令之后,提示了错误信息: TNS-01190: The user ...

  6. https加密过程

    https加密完整过程 step1: “客户”向服务端发送一个通信请求 “客户”->“服务器”:你好 step2: “服务器”向客户发送自己的数字证书.证书中有一个公钥用来加密信息,私钥由“服务 ...

  7. Beta阶段冲刺前计划与安排

    凡事预则立,在Beta开始前,以小组为单位,在敏捷冲刺前发布一篇博客,描述: 1. 介绍小组新加入的成员,Ta担任的角色. 新加入的成员是丁蓉同学,在本团队中担任前端设计. 原因:在之前的团队中,她就 ...

  8. node.js中ws模块创建服务端和客户端,网页WebSocket客户端

    首先下载websocket模块,命令行输入 npm install ws 1.node.js中ws模块创建服务端 // 加载node上websocket模块 ws; var ws = require( ...

  9. Yii2 Restful api设计--App接口编程

    Yii2框架写一套RESTful风格的API,对照魏曦教你学 一,入门 一.目录结构 实现一个简单地RESTful API只需用到三个文件.目录如下: frontend ├─ config │ └ m ...

  10. php实现多进程

    转:http://www.jb51.net/article/71238.htm cd php-version/ext/pcntl phpize ./configure && make ...