1、$A_{1}=2,A_{2}=3,A_{n}=A_{n-2}+A_{n-1}-1$。给出数字$n$,将其表示成若干个$A$中的不同元素的和。

思路:设$B_{n}=A_{n}-1$,那么有$B_{n}=B_{n-2}+B_{n-1},B_{1}=1,B_{2}=2$。那么$B$其实是斐波那契数列。设将$n$表示成$k$个$A$中的元素,那么就等同于将$n-k$表示成$k$个$B$中不同的元素。这个分两步进行:(1)将$n-k$表示成最少的$B$中元素的和,(2)如果这个个数大于$k$那么无解。若小于$k$,可以将某个数字$x=B_{t}$替换为$B_{t-2}+B_{t-1}$以增加一个数字。

#include <stdio.h>
#include <string.h>
#include <string>
#include <iostream>
#include <vector>
#include <set>
#include <map>
#include <queue>
#include <algorithm>
#include <stack>
using namespace std; long long f[100];
int n; void init(long long x)
{
f[1]=1;
f[2]=2;
for(int i=3;i<100;++i)
{
f[i]=f[i-1]+f[i-2];
if(f[i]>x)
{
n=i-1; break;
}
}
} vector<int> ans; int check(int k,long long x)
{
if(x<=0) return 0;
ans.clear();
while(x>0)
{
for(int i=n;i>=1;--i) if(x>=f[i])
{
ans.push_back(i);
x-=f[i];
break;
}
}
if((int)ans.size()>k) return 0;
while((int)ans.size()<k)
{
sort(ans.begin(),ans.end());
int ok=0;
for(int i=0;i<(int)ans.size();++i)
{
if((i==0&&ans[0]>=3)||(i!=0&&ans[i]-ans[i-1]>=3))
{
ans.push_back(ans[i]-1);
ans[i]-=2;
ok=1;
break;
}
}
if(!ok) return 0;
}
return 1;
} class AlmostFibonacciKnapsack
{
public:
vector<int> getIndices(long long x)
{
init(x);
for(int i=1;i<=n;++i) if(check(i,x-i)) return ans;
return vector<int>{-1};
}
};

 2、给出一个二维整数数组$A[n][n]$。构造一个$n$个顶点的带权无向图$G$,使得对于$G$中任意两点$i,j$,它们之间的最小割等于$A[i][j]$。

思路:最小割的一个性质是:对于由一个割$C$将$G$分成的两个点集$P,Q$,对于$P,Q$内任意一点$p,q$,它们之间的最小割小于等于$|C|$。所以,初始化所有顶点是一个集合$S$。然后每一步重复下面操作:

(1)若$S$的大小小于2结束;否则找到最小的$t=A[i][j],i\in S,j\in S$

(2)初始化集合$S_{0},S_{1}$为空,将$S$中第一个元素$x_{0}$放入$S_{0}$.然后对于$S$中任意一个其他元素$x_{i}$,若$A[x_{0}][x_{i}]>t$则将$x_{i}$放入$S_{0}$,否则将其放入$S_{1}$

(3)对于$S_{0},S_{1}$中的元素$x,y$,若$A[x][y]!=t$,则无解。

(4)递归判断$S_{0},S_{1}$

#include <stdio.h>
#include <string.h>
#include <string>
#include <iostream>
#include <vector>
#include <set>
#include <map>
#include <queue>
#include <algorithm>
#include <stack>
using namespace std; const int N=2005;
const int INF=1000000005; class AllGraphCuts
{
int n;
int g[55][55];
vector<int> ans; void add(int u,int v,int w)
{
ans.push_back(w*n*n+u*n+v);
} int dfs(vector<int> S)
{
if(S.size()<=1) return 1;
int tmp=INF;
for(int i=0;i<(int)S.size();++i) for(int j=0;j<(int)S.size();++j)
{
if(i!=j&&g[S[i]][S[j]]<tmp) tmp=g[S[i]][S[j]];
}
vector<int> S0,S1;
S0.push_back(S[0]);
for(int i=1;i<(int)S.size();++i)
{
if(g[S[0]][S[i]]>tmp) S0.push_back(S[i]);
else S1.push_back(S[i]);
}
if(S0.empty()||S1.empty()) return 0;
for(int i=0;i<(int)S0.size();++i) for(int j=0;j<(int)S1.size();++j)
{
if(g[S0[i]][S1[j]]!=tmp) return 0;
}
add(S0[0],S1[0],tmp);
return dfs(S0)&&dfs(S1);
} public:
vector<int> findGraph(vector<int> x)
{
n=1;
while(n*n!=(int)x.size()) ++n;
for(int i=0;i<n;++i) for(int j=0;j<n;++j) g[i][j]=x[i*n+j];
for(int i=0;i<n;++i) for(int j=0;j<n;++j)
{
if((i==j&&g[i][j]!=0)||(g[i][j]!=g[j][i])) return vector<int>{-1};
}
vector<int> S;
for(int i=0;i<n;++i) S.push_back(i);
if(dfs(S)) return ans;
return vector<int>{-1};
}
};

  

topcoder srm 687 div1的更多相关文章

  1. Topcoder SRM 643 Div1 250<peter_pan>

    Topcoder SRM 643 Div1 250 Problem 给一个整数N,再给一个vector<long long>v; N可以表示成若干个素数的乘积,N=p0*p1*p2*... ...

  2. Topcoder Srm 726 Div1 Hard

    Topcoder Srm 726 Div1 Hard 解题思路: 问题可以看做一个二分图,左边一个点向右边一段区间连边,匹配了左边一个点就能获得对应的权值,最大化所得到的权值的和. 然后可以证明一个结 ...

  3. topcoder srm 714 div1

    problem1 link 倒着想.每次添加一个右括号再添加一个左括号,直到还原.那么每次的右括号的选择范围为当前左括号后面的右括号减去后面已经使用的右括号. problem2 link 令$h(x) ...

  4. topcoder srm 738 div1 FindThePerfectTriangle(枚举)

    Problem Statement      You are given the ints perimeter and area. Your task is to find a triangle wi ...

  5. Topcoder SRM 602 div1题解

    打卡- Easy(250pts): 题目大意:rating2200及以上和2200以下的颜色是不一样的(我就是属于那个颜色比较菜的),有个人初始rating为X,然后每一场比赛他的rating如果增加 ...

  6. Topcoder SRM 627 div1 HappyLettersDiv1 : 字符串

    Problem Statement      The Happy Letter game is played as follows: At the beginning, several players ...

  7. Topcoder SRM 584 DIV1 600

    思路太繁琐了 ,实在不想解释了 代码: #include<iostream> #include<cstdio> #include<string> #include& ...

  8. TopCoder SRM 605 DIV1

    604的题解还没有写出来呢.先上605的. 代码去practice房间找. 说思路. A: 贪心,对于每个类型的正值求和,如果没有正值就取最大值,按着求出的值排序,枚举选多少个类型. B: 很明显是d ...

  9. topcoder srm 575 div1

    problem1 link 如果$k$是先手必胜那么$f(k)=1$否则$f(k)=0$ 通过对前面小的数字的计算可以发现:(1)$f(2k+1)=0$,(2)$f(2^{2k+1})=0$,(3)其 ...

随机推荐

  1. 关于toolchain(工具链)的一点知识

    之前一直觉得toolchain是个高大上的东西,现摘录 uClibc中的FAQ以助理解. A toolchain consists of GNU binutils, the gcc compiler, ...

  2. MindMaster学习笔记

    参考博客 http://blog.sina.com.cn/u/6406591976 作者名叫“MindMaster思维导图的博客 ”写了一系列关于思维导图的博客,可以去学习下. 1.其中有一篇比较详细 ...

  3. pip install pyinstaller

    C:\Users\coder211\Desktop>pip install pyinstallerCollecting pyinstaller Downloading PyInstaller-3 ...

  4. 15. 3Sum(字典)

    Given an array nums of n integers, are there elements a, b, c in nums such that a + b + c = 0? Find ...

  5. python爬虫 ----文章爬虫(合理处理字符串中的\n\t\r........)

    import urllib.request import re import time num=input("输入日期(20150101000):") def openpage(u ...

  6. 标准I/O流

    一.标准输入流 标准输入流对象cin,重点掌握的函数 cin.get() //一次只能读取一个字符 cin.get(一个参数) //读一个字符 cin.get(三个参数) //可以读字符串 cin.g ...

  7. HTML/HTML5 Input类型&&表单

    1.HTML 中"不常用"input类型中的属性值: disabled:输入字段禁用: maxlength:输入字段的最大字符长度: readonly:输入字符只读,无法修改: s ...

  8. C# Activator和new的区别

    1.你需要动态的创建一个实例模型的时候,就用Activator.CreateInstance(Type type);如果是明确的知道要创建哪个实例的模型,就可以用 new Class1()了. T t ...

  9. Mybatis分页插件pagehelper的使用

    加入依赖 <dependency> <groupId>com.github.pagehelper</groupId> <artifactId>pageh ...

  10. canvas添加水印

    <canvas id="canvas"></canvas><canvas id="water"></canvas> ...