BFS广度优先 vs DFS深度优先 for Binary Tree
https://www.geeksforgeeks.org/bfs-vs-dfs-binary-tree/
What are BFS and DFS for Binary Tree?
A Tree is typically traversed in two ways:
- Breadth First Traversal (Or Level Order Traversal)
- Depth First Traversals
- Inorder Traversal (Left-Root-Right)
- Preorder Traversal (Root-Left-Right)
- Postorder Traversal (Left-Right-Root)
BFS and DFSs of above Tree Breadth First Traversal : 1 2 3 4 5 Depth First Traversals:
Preorder Traversal : 1 2 4 5 3
Inorder Traversal : 4 2 5 1 3
Postorder Traversal : 4 5 2 3 1
Why do we care?
There are many tree questions that can be solved using any of the above four traversals. Examples of such questions are size, maximum, minimum, print left view, etc.
Is there any difference in terms of Time Complexity?
All four traversals require O(n) time as they visit every node exactly once.
Is there any difference in terms of Extra Space?
There is difference in terms of extra space required.
- Extra Space required for Level Order Traversal is O(w) where w is maximum width of Binary Tree. In level order traversal, queue one by one stores nodes of different level.
- Extra Space required for Depth First Traversals is O(h) where h is maximum height of Binary Tree. In Depth First Traversals, stack (or function call stack) stores all ancestors of a node.
Maximum Width of a Binary Tree at depth (or height) h can be 2h where h starts from 0. So the maximum number of nodes can be at the last level. And worst case occurs when Binary Tree is a perfect Binary Tree with numbers of nodes like 1, 3, 7, 15, …etc. In worst case, value of 2h is Ceil(n/2).
Height for a Balanced Binary Tree is O(Log n). Worst case occurs for skewed歪斜的 tree and worst case height becomes O(n).
So in worst case extra space required is O(n) for both. But worst cases occur for different types of trees.
It is evident from above points that extra space required for Level order traversal is likely to be more when tree is more balanced and extra space for Depth First Traversal is likely to be more when tree is less balanced.
How to Pick One?
- Extra Space can be one factor (Explained above)
- Depth First Traversals are typically recursive and recursive code requires function call overheads.
- The most important points is, BFS starts visiting nodes from root while DFS starts visiting nodes from leaves. So if our problem is to search something that is more likely to closer to root, we would prefer BFS. And if the target node is close to a leaf, we would prefer DFS.
Exercise:
Which traversal should be used to print leaves of Binary Tree and why?
Which traversal should be used to print nodes at k’th level where k is much less than total number of levels?
This article is contributed by Dheeraj Gupta. This
Please write comments if you find anything incorrect, or you want to
share more information about the topic discussed above
二叉树的C#定义
public class TreeNode
{
public int val;
public TreeNode left;
public TreeNode right; public TreeNode(int x)
{
val = x;
}
}
广度优先的遍历C#实现
public IList<IList<int>> LevelOrder(TreeNode root)
{
IList<IList<int>> result = new List<IList<int>>();
Queue<TreeNode> queue=new Queue<TreeNode>();
Enqueue(queue, root);
while (queue.Count > )
{
var node = queue.Dequeue();
Console.WriteLine(node.val);
Output.WriteLine(node.val.ToString());
Enqueue(queue, node.left);
Enqueue(queue, node.right);
} return result;
} private void Enqueue(Queue<TreeNode> tempQueue, TreeNode node)
{
if (node != null)
{
tempQueue.Enqueue(node);
}
}
BFS广度优先 vs DFS深度优先 for Binary Tree的更多相关文章
- DFS+BFS(广度优先搜索弥补深度优先搜索遍历漏洞求合格条件总数)--09--DFS+BFS--蓝桥杯剪邮票
题目描述 如下图, 有12张连在一起的12生肖的邮票.现在你要从中剪下5张来,要求必须是连着的.(仅仅连接一个角不算相连) 比如,下面两张图中,粉红色所示部分就是合格的剪取. 请你计算,一共有多少 ...
- 107. Binary Tree Level Order Traversal II
题目: Given a binary tree, return the bottom-up level order traversal of its nodes' values. (ie, from ...
- 【LeetCode】102. Binary Tree Level Order Traversal 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 DFS BFS 日期 题目描述 Given a bi ...
- 【leetcode❤python】102. Binary Tree Level Order Traversal
#-*- coding: UTF-8 -*-#广度优先遍历# Definition for a binary tree node.# class TreeNode(object):# def ...
- 【Binary Tree Right Side View 】cpp
题目: Given a binary tree, imagine yourself standing on the right side of it, return the values of the ...
- LeetCode Binary Tree Right Side View (DFS/BFS)
题意: 给一棵二叉树,要求收集每层的最后一个节点的值.按从顶到底装进vector返回. 思路: BFS比较简单,先遍历右孩子就行了. /** * Definition for a binary tre ...
- HDU 1241 Oil Deposits DFS(深度优先搜索) 和 BFS(广度优先搜索)
Oil Deposits Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total ...
- HDU 4707 Pet(DFS(深度优先搜索)+BFS(广度优先搜索))
Pet Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submissio ...
- (二叉树 BFS DFS) leetcode 104. Maximum Depth of Binary Tree
Given a binary tree, find its maximum depth. The maximum depth is the number of nodes along the long ...
随机推荐
- Java基础语法(二 )
五.运算符 *算术运算符 *赋值运算符 *关系运算符 *逻辑运算符 *位运算符 *三目运算符 算术运算符 *+,-,*,/都是比较简单的操作 *+的几种作用: 加法 正数 字符串连接符 *除法的时候要 ...
- 20155228 2016-2017-2 《Java程序设计》第9周学习总结
20155228 2016-2017-2 <Java程序设计>第9周学习总结 教材学习内容总结 整合数据库 JDBC是用于执行SQL的解决方案,开发人员使用JDBC的标准接口,数据库厂商则 ...
- css中块级元素、内联元素(行内元素、内嵌元素)
Block element 块级元素 顾名思义就是以块显示的元素,高度宽度都是可以设置的.比如我们常用 的<div>.<p>.<ul>默认状态下都是属于块级元 ...
- Java解析Json字符串--复杂对象
{ "name": "三班", "students": [ { "age": 25, "gender" ...
- C# 数值类型和无穷大
在c#语言中的数字有两个特性要了解.例如:任何数除以0所得的结果是无穷大,不在int long 和decimal类型的范围内.所以计算(一个数除以0会出错),但是在double和float类型中有一个 ...
- jQuery懒加载插件jquery.lazyload.js使用说明实例
jQuery懒加载插件jquery.lazyload.js使用说明实例很多网站都会用到‘图片懒加载’这种方式对网站进行优化,即延迟加载图片或符合某些条件才开始加载图片.懒加载原理:浏览器会自动对页面中 ...
- Spring 注入的两种方式
Spring 的两种注入方式: 1. 属性注入:通过无参构造函数+setter方法注入 2. 构造注入:通过有参的构造函数注入. 优缺点: 1. 属性注入直白易懂,缺点是对于属性可选的时候,很多个构造 ...
- Spring AOP(基于代理类的AOP实现)
#基于代理类的AOP实现:step1: 1 package com.sjl.factorybean; /**切面类*/ import org.aopalliance.intercept.MethodI ...
- mybatis的dao的mapper写法
## MyBatis的Dao编写[mapper代理方式实现] step1: 写一个接口,并写抽象方法 package com.sjl.mapper; import com.sjl.model.User ...
- EDK II之DXE Core框架简介
本文旨在简单的介绍一下DXE阶段的工作原理: UDK2015的开源代码下载:https://github.com/tianocore/tianocore.github.io/wiki/EDK-II D ...