BFS广度优先 vs DFS深度优先 for Binary Tree
https://www.geeksforgeeks.org/bfs-vs-dfs-binary-tree/
What are BFS and DFS for Binary Tree?
A Tree is typically traversed in two ways:
- Breadth First Traversal (Or Level Order Traversal)
- Depth First Traversals
- Inorder Traversal (Left-Root-Right)
- Preorder Traversal (Root-Left-Right)
- Postorder Traversal (Left-Right-Root)
BFS and DFSs of above Tree Breadth First Traversal : 1 2 3 4 5 Depth First Traversals:
Preorder Traversal : 1 2 4 5 3
Inorder Traversal : 4 2 5 1 3
Postorder Traversal : 4 5 2 3 1
Why do we care?
There are many tree questions that can be solved using any of the above four traversals. Examples of such questions are size, maximum, minimum, print left view, etc.
Is there any difference in terms of Time Complexity?
All four traversals require O(n) time as they visit every node exactly once.
Is there any difference in terms of Extra Space?
There is difference in terms of extra space required.
- Extra Space required for Level Order Traversal is O(w) where w is maximum width of Binary Tree. In level order traversal, queue one by one stores nodes of different level.
- Extra Space required for Depth First Traversals is O(h) where h is maximum height of Binary Tree. In Depth First Traversals, stack (or function call stack) stores all ancestors of a node.
Maximum Width of a Binary Tree at depth (or height) h can be 2h where h starts from 0. So the maximum number of nodes can be at the last level. And worst case occurs when Binary Tree is a perfect Binary Tree with numbers of nodes like 1, 3, 7, 15, …etc. In worst case, value of 2h is Ceil(n/2).
Height for a Balanced Binary Tree is O(Log n). Worst case occurs for skewed歪斜的 tree and worst case height becomes O(n).
So in worst case extra space required is O(n) for both. But worst cases occur for different types of trees.
It is evident from above points that extra space required for Level order traversal is likely to be more when tree is more balanced and extra space for Depth First Traversal is likely to be more when tree is less balanced.
How to Pick One?
- Extra Space can be one factor (Explained above)
- Depth First Traversals are typically recursive and recursive code requires function call overheads.
- The most important points is, BFS starts visiting nodes from root while DFS starts visiting nodes from leaves. So if our problem is to search something that is more likely to closer to root, we would prefer BFS. And if the target node is close to a leaf, we would prefer DFS.
Exercise:
Which traversal should be used to print leaves of Binary Tree and why?
Which traversal should be used to print nodes at k’th level where k is much less than total number of levels?
This article is contributed by Dheeraj Gupta. This
Please write comments if you find anything incorrect, or you want to
share more information about the topic discussed above
二叉树的C#定义
public class TreeNode
{
public int val;
public TreeNode left;
public TreeNode right; public TreeNode(int x)
{
val = x;
}
}
广度优先的遍历C#实现
public IList<IList<int>> LevelOrder(TreeNode root)
{
IList<IList<int>> result = new List<IList<int>>();
Queue<TreeNode> queue=new Queue<TreeNode>();
Enqueue(queue, root);
while (queue.Count > )
{
var node = queue.Dequeue();
Console.WriteLine(node.val);
Output.WriteLine(node.val.ToString());
Enqueue(queue, node.left);
Enqueue(queue, node.right);
} return result;
} private void Enqueue(Queue<TreeNode> tempQueue, TreeNode node)
{
if (node != null)
{
tempQueue.Enqueue(node);
}
}
BFS广度优先 vs DFS深度优先 for Binary Tree的更多相关文章
- DFS+BFS(广度优先搜索弥补深度优先搜索遍历漏洞求合格条件总数)--09--DFS+BFS--蓝桥杯剪邮票
题目描述 如下图, 有12张连在一起的12生肖的邮票.现在你要从中剪下5张来,要求必须是连着的.(仅仅连接一个角不算相连) 比如,下面两张图中,粉红色所示部分就是合格的剪取. 请你计算,一共有多少 ...
- 107. Binary Tree Level Order Traversal II
题目: Given a binary tree, return the bottom-up level order traversal of its nodes' values. (ie, from ...
- 【LeetCode】102. Binary Tree Level Order Traversal 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 DFS BFS 日期 题目描述 Given a bi ...
- 【leetcode❤python】102. Binary Tree Level Order Traversal
#-*- coding: UTF-8 -*-#广度优先遍历# Definition for a binary tree node.# class TreeNode(object):# def ...
- 【Binary Tree Right Side View 】cpp
题目: Given a binary tree, imagine yourself standing on the right side of it, return the values of the ...
- LeetCode Binary Tree Right Side View (DFS/BFS)
题意: 给一棵二叉树,要求收集每层的最后一个节点的值.按从顶到底装进vector返回. 思路: BFS比较简单,先遍历右孩子就行了. /** * Definition for a binary tre ...
- HDU 1241 Oil Deposits DFS(深度优先搜索) 和 BFS(广度优先搜索)
Oil Deposits Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total ...
- HDU 4707 Pet(DFS(深度优先搜索)+BFS(广度优先搜索))
Pet Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submissio ...
- (二叉树 BFS DFS) leetcode 104. Maximum Depth of Binary Tree
Given a binary tree, find its maximum depth. The maximum depth is the number of nodes along the long ...
随机推荐
- 54. Spiral Matrix(剑指offer 19)
Given a matrix of m x n elements (m rows, n columns), return all elements of the matrix in spiral or ...
- JS中常用的输出方式(五种)
1.alert("要输出的内容"); ->在浏览器中弹出一个对话框,然后把要输出的内容展示出来 ->alert都是把要输出的内容首先转换为字符串然后在输出的 2.doc ...
- Code Review(转)
Code Review是一种通过复查代码提高代码质量的过程,在XP方法中占有极为重要的地位,也已经成为软件工程中一个不可缺少的环节.本文通过对Code Review的一些概念和经验的探讨,就如何进行C ...
- Thinking-Bear magic (计算几何)
---- 点我 ---- 题目大意: 给你一个正n边形及边长 a和一个正整数L, 求正多边形的面积s,若s大于L,则连接相邻两边的中点,形成新的正多边形,重复这个操作直至s小于L:如图: 正多边形的面 ...
- php获得可靠的精准的当前时间 ( 通过授时服务器 )
有一种情形是这样子的,比如机票业务中的订票流程,我们需要一个非常可靠的当前时间来支持,尽管大多数服务器的时间是非常准确的,我们使用time()来获取的时间是可靠的,但未免会有不确切的情况,也有的服务器 ...
- tomcat1章1
package ex01.pyrmont; import java.net.Socket; import java.net.ServerSocket; import java.net.InetAddr ...
- 算法提高 c++_ch02_01 (强制类型转换)
编写一个程序,利用强制类型转换打印元音字母大小写10种形式的ASCII码. 输出的顺序为:大写的字母A,E,I,O,U的ASCII码,小写的字母a,e,i,o,u的ASCII码.所有的ASCII码都用 ...
- Codeforces 841B - Godsend
题目链接:http://codeforces.com/problemset/problem/841/B Leha somehow found an array consisting of n inte ...
- linux 下面压缩、解压.rar文件
一,解压问题 在网上下东西的时候,经常会遇到.rar后缀的文件,我用tar解压,解压不出,上网找啊找,一直没找到什么合适的工具来压缩和解压.rar后缀的文件,现在我找到了. 二,rar和unrar安装 ...
- flask框架----上下文管理
一.上下文管理相关知识点: a.类似于本地线程 创建Local类: { 线程或协程唯一标识: { 'stack':[request],'xxx':[session,] }, 线程或协程唯一标识: { ...