P4777 【模板】扩展中国剩余定理(EXCRT)
思路
中国剩余定理解决的是这样的问题
求x满足
\]
在模数互质的情况下,解为
\]
其中\(M=\prod_{i}m_i\),\(M_i=\frac{M}{m_i}\),\(M_i^{-1}\)为\(M_i\)在模\(m_i\)意义下的逆元
在模数不互质的情况下,我们需要扩展中国剩余定理
设有两个同余方程
\]
其中\(m_1\)与\(m_2\)不互质
可得到
x=a_2+m_2x_2
\]
所以得到
\]
变形后有
\]
用exgcd解出最小的\(x_1\)
则有
\]
相当于把两个式子合并在一起,EXcrt就是将所有式子合并完即可
代码
因为不想写龟速乘所以用了__int128
#include <cstdio>
#include <algorithm>
#include <cstring>
#define int __int128
using namespace std;
int exgcd(int a,int b,int &x,int &y){
if(b==0){
x=1,y=0;
return a;
}
int req=exgcd(b,a%b,x,y);
int t=x;
x=y;
y=t-a/b*y;
return req;
}
int gcd(int a,int b){
return (b==0)?a:gcd(b,a%b);
}
int lcm(int a,int b){
return (a*b)/gcd(a,b);
}
int calc(int a,int b,int c){//ax+by=c
int d=gcd(a,b);
int x1,x2;
exgcd(a,b,x1,x2);
b/=d;
x=(x*(c/d)%b+b)%b;
return ans;
}
pair<int,int> merge(int a1,int m1,int a2,int m2){
int x1=calc(m1,m2,a2-a1);
return make_pair(x1*m1+a1,lcm(m1,m2));
}
int n,a[100100],m[100100];
signed main(){
long long mx;
scanf("%lld",&mx);
n=mx;
for(int i=1;i<=n;i++){
scanf("%lld",&mx);
m[i]=mx;
scanf("%lld",&mx);
a[i]=mx;
}
int mida=a[1],midm=m[1];
for(int i=1;i<n;i++){
pair<int,int> t= merge(mida,midm,a[i+1],m[i+1]);
mida=t.first;
midm=t.second;
}
printf("%lld\n",(long long)mida);
return 0;
}
P4777 【模板】扩展中国剩余定理(EXCRT)的更多相关文章
- 中国剩余定理(CRT) & 扩展中国剩余定理(ExCRT)总结
中国剩余定理(CRT) & 扩展中国剩余定理(ExCRT)总结 标签:数学方法--数论 阅读体验:https://zybuluo.com/Junlier/note/1300035 前置浅讲 前 ...
- 扩展中国剩余定理 (exCRT) 的证明与练习
原文链接https://www.cnblogs.com/zhouzhendong/p/exCRT.html 扩展中国剩余定理 (exCRT) 的证明与练习 问题模型 给定同余方程组 $$\begin{ ...
- 扩展中国剩余定理 (ExCRT)
扩展中国剩余定理 (ExCRT) 学习笔记 预姿势: 扩展中国剩余定理和中国剩余定理半毛钱关系都没有 问题: 求解线性同余方程组: \[ f(n)=\begin{cases} x\equiv a_1\ ...
- 扩展中国剩余定理(EXCRT)快速入门
问题 传送门 看到这个问题感觉很难??? 不用怕,往下看就好啦 假如你不会CRT也没关系 EXCRT大致思路 先考虑将方程组两两联立解开,如先解第一个与第二个,再用第一个与第二个的通解来解第三个... ...
- 扩展中国剩余定理 exCRT 学习笔记
前言 由于 \(\{\mathrm{CRT}\}\subseteq\{\mathrm{exCRT}\}\),而且 CRT 又太抽象了,所以直接学 exCRT 了. 摘自 huyufeifei 博客 这 ...
- P4777 【模板】扩展中国剩余定理(EXCRT)/ poj2891 Strange Way to Express Integers
P4777 [模板]扩展中国剩余定理(EXCRT) excrt模板 我们知道,crt无法处理模数不两两互质的情况 然鹅excrt可以 设当前解到第 i 个方程 设$M=\prod_{j=1}^{i-1 ...
- P4777 【模板】扩展中国剩余定理(EXCRT)&& EXCRT
EXCRT 不保证模数互质 \[\begin{cases} x \equiv b_1\ ({\rm mod}\ a_1) \\ x\equiv b_2\ ({\rm mod}\ a_2) \\ ... ...
- [Luogu P4777] 【模板】扩展中国剩余定理(EXCRT) (扩展中国剩余定理)
题面 传送门:洛咕 Solution 真*扩展中国剩余定理模板题.我怎么老是在做模板题啊 但是这题与之前不同的是不得不写龟速乘了. 还有两个重点 我们在求LCM的时候,记得先/gcd再去乘另外那个数, ...
- 扩展中国剩余定理(EXCRT)学习笔记
扩展中国剩余定理(EXCRT)学习笔记 用途 求解同余方程组 \(\begin{cases}x\equiv c_{1}\left( mod\ m_{1}\right) \\ x\equiv c_{2} ...
随机推荐
- vs2013未找到与约束匹配的导出
解决方法: 1.关闭VS: 2.去C:/Users/<your users name>/AppData/Local/Microsoft/VisualStudio/12.0/Componen ...
- C#深入研究ArrayList动态数组自动扩容原理
1 void Test1() { ArrayList arrayList = new ArrayList(); ; ; i < length; i++) { arrayList.Add(&quo ...
- CentOS 5 yum源无法使用
在新装的CentOS 5.7系统中,由于CentOS 5.7版本比较旧,yum源无法使用. 尝试多种方法,最终从http://blog.csdn.net/zhuix7788/article/detai ...
- turtle库基础练习
1.画一组同切圆 import turtle turtle.circle(10) turtle.circle(20) turtle.circle(30) turtle.circle(40) turtl ...
- BufferReader BufferWriter
Copying information from one file to another with 'BufferReader BufferWriter' public class Demo5 { p ...
- 决策树算法——ID3
决策树算法是一种有监督的分类学习算法.利用经验数据建立最优分类树,再用分类树预测未知数据. 例子:利用学生上课与作业状态预测考试成绩. 上述例子包含两个可以观测的属性:上课是否认真,作业是否认真,并以 ...
- IO多路复用 IO异步
一.概念说明 同步IO和异步IO,阻塞IO和非阻塞IO分别是什么,到底有什么区别?不同的人在不同的环境给出的答案是不同的.所以先限定一下本文的环境.本文讨论的背景是Linux环境下的network I ...
- ATM取款机
package Tests; import java.io.BufferedReader;import java.io.File;import java.io.FileInputStream;impo ...
- Linux基础命令---tracepath追踪路由信息
tracepath tracepath指令可以追踪数据到达目标主机的路由信息,同时还能够发现MTU值.它跟踪路径到目的地,沿着这条路径发现MTU.它使用UDP端口或一些随机端口.它类似于Tracero ...
- Anaconda下载及安装及查看安装的Python库用法
Anaconda下载及安装及查看安装的Python库用法 Anaconda 是一个用于科学计算的 Python 发行版,提供了包管理与环境管理的功能.Anaconda 利用 conda 来进行 pac ...