【做题】cf603E——线段树分治
首先感谢题解小哥,他在标算外又总结了三种做法。
此处仅提及最后一种做法。
首先考虑题目中要求的所有结点度数为奇数的限制。
对于每一个联通块,因为所有结点总度数是偶数,所以总结点数也必须是偶数的。即所有联通块都要是偶数大小。
而考虑任意一个偶数大小的联通块,我们任意取它的一个生成树,然后进行如下算法:
设 1 为根结点;
按深度从大到小枚举每一个结点
若其当前度数为偶数
则断开与他的父结点的连边;
这样除根结点外的所有结点的度数都能保证为奇数,而因为总度数和为偶数,所以根结点的度数也为奇数。
因此,我们得到
存在方案使得所有结点度数为奇数 \(\iff\) 所有联通快大小为偶数。
注意到偶数加偶数还是偶数,换言之,添加多余的边是不会使答案变劣的。并且,答案是单调递减的。所以我们可以达到如下结论:
如果第\(j\)次询问的答案大于等于第\(i\)条边的边权,那么可以在处理询问区间\(\left[ i,j-1 \right]\)时直接将第\(i\)条边加上。
这样我们就可以用线段树分治。我们对询问开线段树,从后往前处理。遍历到叶结点时按边权暴力从小到大枚举边(在上一次基础上),与此同时确定了枚举到的边产生贡献的范围,用线段树实现区间修改。在遍历时需要维护支持撤销操作的并查集。这相当于是在分治的同时确定每条边的删除时间,即答案小于它的边权的时刻。
时间复杂度\(O(nlog^2n)\)。
#include <bits/stdc++.h>
using namespace std;
const int N = 300010;
int odd;
struct record {
int *p,v;
inline void rollback() {
*p = v;
}
} rec[N * 10];
int uni[N],sz[N],cnt;
int get_fa(int x) {
while (uni[x] != x)
x = uni[x];
return x;
}
void unio(int x,int y) {
x = get_fa(x);
y = get_fa(y);
if (x == y) return;
if (sz[x] > sz[y]) swap(x,y);
int tmp = (sz[x]&1) + (sz[y]&1) - ((sz[x] + sz[y])&1);
rec[++cnt] = (record) {&odd,odd};
odd -= tmp;
rec[++cnt] = (record) {&uni[x],uni[x]};
uni[x] = y;
rec[++cnt] = (record) {&sz[y],sz[y]};
sz[y] += sz[x];
}
struct data {
int a,b,v,id;
bool operator < (const data& x) const {
return v < x.v;
}
} dat[N];
vector<int> edg[N << 2];
int n,m,cur,ans[N];
void modify(int lp,int rp,int id,int x,int l,int r) {
if (lp > rp) return;
if (lp > r || rp < l) return;
if (l >= lp && r <= rp)
return (void) (edg[x].push_back(id));
int mid = (l + r) >> 1;
modify(lp,rp,id,x<<1,l,mid);
modify(lp,rp,id,x<<1|1,mid+1,r);
}
void solve(int x,int l,int r) {
int tmp = cnt;
for (int i = 0 ; i < (int)edg[x].size() ; ++ i)
unio(dat[edg[x][i]].a,dat[edg[x][i]].b);
if (l != r) {
int mid = (l + r) >> 1;
solve(x<<1|1,mid+1,r);
solve(x<<1,l,mid);
} else {
for ( ; cur <= m && odd > 0 ; ++ cur) {
if (dat[cur].id > l) continue;
unio(dat[cur].a,dat[cur].b);
modify(dat[cur].id,l-1,cur,1,1,m);
}
if (odd > 0) ans[l] = -1;
else ans[l] = dat[cur-1].v;
}
while (cnt > tmp)
rec[cnt--].rollback();
}
int main() {
int a,b,c;
scanf("%d%d",&n,&m);
odd = n;
for (int i = 1 ; i <= m ; ++ i) {
scanf("%d%d%d",&a,&b,&c);
dat[i] = (data) {a,b,c,i};
}
for (int i = 1 ; i <= n ; ++ i)
uni[i] = i, sz[i] = 1;
sort(dat+1,dat+m+1);
cur = 1;
solve(1,1,m);
for (int i = 1 ; i <= m ; ++ i)
printf("%d\n",ans[i]);
return 0;
}
小结:其实我根本不会想到糊结论……线段树分治的做法,相比LCT做法更加巧妙,利用题目的特殊性质从而简化了代码量。
【做题】cf603E——线段树分治的更多相关文章
- BZOJ4644: 经典傻逼题【线段树分治】【线性基】
Description 这是一道经典傻逼题,对经典题很熟悉的人也不要激动,希望大家不要傻逼. 考虑一张N个点的带权无向图,点的编号为1到N. 对于图中的任意一个点集 (可以为空或者全集),所有恰好有一 ...
- 【线段树分治 01背包】loj#6515. 「雅礼集训 2018 Day10」贪玩蓝月
考试时候怎么就是没想到线段树分治呢? 题目描述 <贪玩蓝月>是目前最火爆的网页游戏.在游戏中每个角色都有若干装备,每件装备有一个特征值 $w$ 和一个战斗力 $v$ .在每种特定的情况下, ...
- 洛谷.3733.[HAOI2017]八纵八横(线性基 线段树分治 bitset)
LOJ 洛谷 最基本的思路同BZOJ2115 Xor,将图中所有环的异或和插入线性基,求一下线性基中数的异或最大值. 用bitset优化一下,暴力的复杂度是\(O(\frac{qmL^2}{w})\) ...
- BZOJ4025 二分图(线段树分治+并查集)
之前学了一下线段树分治,这还是第一次写.思想其实挺好理解,即离线后把一个操作影响到的时间段拆成线段树上的区间,并标记永久化.之后一块处理,对于某个节点表示的时间段,影响到他的就是该节点一直到线段树根的 ...
- 【BZOJ2001】[HNOI2010]城市建设(CDQ分治,线段树分治)
[BZOJ2001][HNOI2010]城市建设(CDQ分治,线段树分治) 题面 BZOJ 洛谷 题解 好神仙啊这题.原来想做一直不会做(然而YCB神仙早就切了),今天来怒写一发. 很明显这个玩意换种 ...
- 【BZOJ4137】火星商店问题(线段树分治,可持久化Trie)
[BZOJ4137]火星商店问题(线段树分治,可持久化Trie) 题面 洛谷 BZOJ权限题 题解 显然可以树套树,外层线段树,内层可持久化Trie来做. 所以我们需要更加优美的做法.--线段树分治. ...
- [基本操作]线段树分治和动态dp
不知道为什么要把这两个没什么关系的算法放到一起写...可能是都很黑科技? 1.线段树分治 例题:bzoj4026 二分图 给你一个图,资瓷加一条边,删一条边,询问当前图是不是二分图 如果用 LCT 的 ...
- 【Codeforces576E_CF576E】Painting Edges(可撤销并查集+线段树分治)
题目 CF576E 分析: 从前天早上肝到明天早上qwq其实颓了一上午MC ,自己瞎yy然后1A,写篇博客庆祝一下. 首先做这题之前推荐一道很相似的题:[BZOJ4025]二分图(可撤销并查集+线段树 ...
- [BZOJ 4025]二分图(线段树分治+带边权并查集)
[BZOJ 4025]二分图(线段树分治+带边权并查集) 题面 给出一个n个点m条边的图,每条边会在时间s到t出现,问每个时间的图是否为一个二分图 \(n,m,\max(t_i) \leq 10^5\ ...
随机推荐
- itextsharp display:none无效的bug
在使用itextsharp实现 html 2 pdf时,发现display:none无效.如 <div style="display: none">应该隐藏</d ...
- Rpgmakermv(30) GameQuest任务插件
插件简介: 很牛X的任务插件(个人目前用过中的) 插件用法说明 Report any bugs, editor or plugin related here: http://forums.rpgmak ...
- html5-常用的文本元素
<!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8&qu ...
- https://scrapingclub.com/exercise/detail_cookie/
def parse(self, response): pattern=re.compile('token=(.*?);') token=pattern.findall( response.header ...
- Spark学习之路 (十九)SparkSQL的自定义函数UDF
在Spark中,也支持Hive中的自定义函数.自定义函数大致可以分为三种: UDF(User-Defined-Function),即最基本的自定义函数,类似to_char,to_date等 UDAF( ...
- 【Redis学习之八】Redis集群:主从复制
环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk8 redis-2.8.18 Redis集群分类: 主从复制 R ...
- Hive 数仓中常见的日期转换操作
(1)Hive 数仓中一些常用的dt与日期的转换操作 下面总结了自己工作中经常用到的一些日期转换,这类日期转换经常用于报表的时间粒度和统计周期的控制中 日期变换: (1)dt转日期 to_date(f ...
- bzoj1594 Pku3764 The xor-longest Path
题目链接 先求每个点到根的异或和 然后就要找出两个点,使dis[a]^dis[b]最大 注意异或的性质,我们可以用trie树,沿着与当前数字每位的相反方向走 #include<algorithm ...
- 动态创建生成lambd表达式
基于网上找的一段代码进行修改,目前扩展了NotContains方法的实现 using System; using System.Collections.Generic; using System.Co ...
- 简单的图像显著性区域特征提取方法-----opencv实现LC,AC,FT
https://blog.csdn.net/cai13160674275/article/details/72991049?locationNum=7&fps=1 四种简单的图像显著性区域特征 ...