https://www.cnblogs.com/GXZlegend/p/8611948.html

 #include<cmath>
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
#define For(i,x) for (int i=h[x],k; i; i=nxt[i])
using namespace std; const int N=;
const double pi=acos(-.);
int n,u,v,S,rt,tot,cnt,mx,d[N],q[N],rev[N];
int vis[N],sz[N],f[N],h[N],to[N<<],nxt[N<<];
double ans,num[N];
void add(int u,int v){ to[++cnt]=v; nxt[cnt]=h[u]; h[u]=cnt; } struct C{ double x,y; }a[N];
C operator +(const C &a,const C &b){ return (C){a.x+b.x,a.y+b.y}; }
C operator -(const C &a,const C &b){ return (C){a.x-b.x,a.y-b.y}; }
C operator *(const C &a,const C &b){ return (C){a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x}; } void find(int x,int fa){
sz[x]=; f[x]=;
For(i,x) if (!vis[k=to[i]] && k!=fa)
find(k,x),sz[x]+=sz[k],f[x]=max(f[x],sz[k]);
f[x]=max(f[x],S-sz[x]);
if (f[x]<f[rt]) rt=x;
} void get(int x,int fa){
q[++tot]=d[x];
For(i,x) if (!vis[k=to[i]] && k!=fa) d[k]=d[x]+,get(k,x);
} void DFT(C a[],int n,int f){
for (int i=; i<n; i++) if (i<rev[i]) swap(a[i],a[rev[i]]);
for (int i=; i<n; i<<=){
C wn=(C){cos(pi/i),f*sin(pi/i)};
for (int p=i<<,j=; j<n; j+=p){
C w=(C){,};
for (int k=; k<i; k++,w=w*wn){
C x=a[j+k],y=w*a[i+j+k]; a[j+k]=x+y; a[i+j+k]=x-y;
}
}
}
if (f==-) for (int i=; i<n; i++) a[i].x/=n;
} void calc(int fl){
int n=,L=; mx=;
rep(i,,tot) mx=max(mx,q[i]);
for (; n<=mx<<; n<<=) L++;
for (int i=; i<n; i++) rev[i]=(rev[i>>]>>)|((i&)<<(L-));
for (int i=; i<n; i++) a[i].x=a[i].y=;
rep(i,,tot) a[q[i]].x++;
DFT(a,n,);
for (int i=; i<n; i++) a[i]=a[i]*a[i];
DFT(a,n,-);
rep(i,,*mx) num[i]+=fl*(int)(a[i].x+0.1);
} void work(int x){
vis[x]=; d[x]=tot=; get(x,); calc();
For(i,x) if (!vis[k=to[i]]){
d[k]=; tot=; get(k,); calc(-);
S=sz[k]; rt=; find(k,); work(rt);
}
} int main(){
freopen("bzoj3451.in","r",stdin);
freopen("bzoj3451.out","w",stdout);
scanf("%d",&n);
rep(i,,n) scanf("%d%d",&u,&v),add(u+,v+),add(v+,u+);
S=f[]=n; find(,); work(rt);
rep(i,,n) ans+=num[i-]/i;
printf("%.4lf\n",ans);
return ;
}

[BZOJ3451][Tyvj1953]Normal(点分治+FFT)的更多相关文章

  1. 【BZOJ3451】Tyvj1953 Normal 点分治+FFT+期望

    [BZOJ3451]Tyvj1953 Normal Description 某天WJMZBMR学习了一个神奇的算法:树的点分治!这个算法的核心是这样的:消耗时间=0Solve(树 a) 消耗时间 += ...

  2. BZOJ3451 Tyvj1953 Normal 点分治 多项式 FFT

    原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ3451.html 题目传送门 - BZOJ3451 题意 给定一棵有 $n$ 个节点的树,在树上随机点分 ...

  3. 【BZOJ3451】Tyvj1953 Normal - 点分治+FFT

    题目来源:NOI2019模拟测试赛(七) 非原题面,题意有略微区别 题意: 吐槽: 心态崩了. 好不容易场上想出一题正解,写了三个小时结果写了个假的点分治,卡成$O(n^2)$ 我退役吧. 题解: 原 ...

  4. BZOJ 3451: Tyvj1953 Normal 点分治+FFT

    根据期望的线性性,我们算出每个点期望被计算次数,然后进行累加. 考虑点 $x$ 对点 $y$ 产生了贡献,那么说明 $(x,y)$ 之间的点中 $x$ 是第一个被删除的. 这个期望就是 $\frac{ ...

  5. 3451: Tyvj1953 Normal 点分治 FFT

    国际惯例的题面:代价理解为重心和每个点这个点对的代价.根据期望的线性性,我们枚举每个点,计算会产生的ij点对的代价即可.那么,i到j的链上,i必须是第一个被选择的点.对于i来说,就是1/dis(i,j ...

  6. [BZOJ3451]Normal(点分治+FFT)

    [BZOJ3451]Normal(点分治+FFT) 题面 给你一棵 n个点的树,对这棵树进行随机点分治,每次随机一个点作为分治中心.定义消耗时间为每层分治的子树大小之和,求消耗时间的期望. 分析 根据 ...

  7. BZOJ3451: Tyvj1953 Normal

    题解: 好神的一道题.蒟蒻只能膜拜题解. 考虑a对b的贡献,如果a是a-b路径上第一个删除的点,那么给b贡献1. 所以转化之后就是求sigma(1/dist(i,j)),orz!!! 如果不是分母的话 ...

  8. BZOJ3451 Tyvj1953 Normal 【期望 + 点分治 + NTT】

    题目链接 BZOJ3451 题解 考虑每个点产生的贡献,即为该点在点分树中的深度期望值 由于期望的线性,最后的答案就是每个点贡献之和 对于点对\((i,j)\),考虑\(j\)成为\(i\)祖先的概率 ...

  9. 【bzoj3451】Tyvj1953 Normal 期望+树的点分治+FFT

    题目描述 给你一棵 $n$ 个点的树,对这棵树进行随机点分治,每次随机一个点作为分治中心.定义消耗时间为每层分治的子树大小之和,求消耗时间的期望. 输入 第一行一个整数n,表示树的大小接下来n-1行每 ...

随机推荐

  1. 【C++】获取URL中主机域名

    // ConsoleApplication1.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <windows.h& ...

  2. python之random模块分析(一)

    random是python产生伪随机数的模块,随机种子默认为系统时钟.下面分析模块中的方法: 1.random.randint(start,stop): 这是一个产生整数随机数的函数,参数start代 ...

  3. GCC的符号可见性——解决多个库同名符号冲突问题

    引用自:https://github.com/wwbmmm/blog/wiki/gcc_visibility 问题 最近项目遇到一些问题,场景如下 主程序依赖了两个库libA的funcA函数和libB ...

  4. IAR拷贝工程后,修改工程名的方法

    在实际使用过程中,经常基于某个demo进行开发,但是demo的项目名往往不满足新项目的名称,如果重新建立工程,就需要进行一系列的配置,非常麻烦,其实可以直接修改项目名,做法如下; 1. 修改项目目录下 ...

  5. dup,dup2函数【转】

    转自:http://eriol.iteye.com/blog/1180624 转自:http://www.cnblogs.com/jht/archive/2006/04/04/366086.html ...

  6. CentOS6.5优化脚本以及检测优化脚本

    一.tunning.sh #!/bin/bash # 系统优化脚本 # 使用于CentOS 6.4 x64系统 # Ver : 1.1.1 KCF=/etc/sysctl.conf # ------- ...

  7. vue系列之vue-resource

    vue-resource是Vue.js的一款插件,它可以通过XMLHttpRequest或JSONP发起请求并处理响应.也就是说,$.ajax能做的事情,vue-resource插件一样也能做到,而且 ...

  8. C++ code:数值计算之矩形法求解积分问题

    积分的通常方法是将区域切割成一个个的小矩形,然后求这些小矩形的和.小矩形切割得越细,计算精度就越高,可以将切割小矩形的数量作为循环迭代变量,将前后两个不同精度下的小矩形和之差,作为逼近是否达到要求的比 ...

  9. 并发研究之Java内存模型(Java Memory Model)

    Java内存模型JMM java内存模型定义 上一遍文章我们讲到了CPU缓存一致性以及内存屏障问题.那么Java作为一个跨平台的语言,它的实现要面对不同的底层硬件系统,设计一个中间层模型来屏蔽底层的硬 ...

  10. appium自动化测试之元素定位

    方法一 使用SDK中附带的uiautomatorviewer来定位 在SDK安装目录下的tools下有个uiautomatorviewer.bat批处理文件点击运行 运行后(注意appium desk ...