给定一个由小写字母组成的字符串,输出有多少重复的回文子序列

#include<cstdio>
#include<cstring> using namespace std; #define N 2002 const int mod=1e9+; int n;
char s[N]; int f[N][N],g[N][N]; int pre[N][],nxt[N][]; int get_f(int l,int r)
{
if(l>r) return ;
int &ans=f[l][r];
if(ans!=-) return ans;
if(s[l]==s[r]) ans=get_f(l+,r)+get_f(l,r-);
else ans=get_f(l+,r)+get_f(l,r-)-get_f(l+,r-);
ans%=mod;
if(ans<) ans+=mod;
return ans;
} int get_g(int l,int r)
{
if(l==r) return ;
if(l>r) return ;
int &ans=g[l][r];
if(ans!=-) return ans;
if(s[l]!=s[r]) ans=get_g(l+,r)+get_g(l,r-)-get_g(l+,r-);
else
{
if(nxt[l][s[l]-'a']>=r && pre[r][s[r]-'a']<=l) ans=get_g(l+,r-)*+;
else if(nxt[l][s[l]-'a']==pre[r][s[r]-'a']) ans=get_g(l+,r-)*;
else ans=get_g(l+,r-)*-get_g(nxt[l][s[l]-'a']+,pre[r][s[r]-'a']-);
}
ans%=mod;
if(ans<) ans+=mod;
return ans;
} void cal()
{
for(int i=;i<=n;++i)
{
for(int j=i+;j<=n;++j)
if(!nxt[i][s[j]-'a']) nxt[i][s[j]-'a']=j;
for(int j=i-;j;--j)
if(!pre[i][s[j]-'a']) pre[i][s[j]-'a']=j;
}
} int main()
{
freopen("library.in","r",stdin);
freopen("library.out","w",stdout);
scanf("%s",s+);
n=strlen(s+);
memset(f,-,sizeof(f));
int all=get_f(,n);
cal();
memset(g,-,sizeof(g));
int dif=get_g(,n);
int ans=all-dif;
if(ans<) ans+=mod;
printf("%d",ans);
}

爆搜代码

#include<cstdio>
#include<cstring> using namespace std; int n;
char s[]; char tt[],t[];
int L; int ans,sum; int cnt[]; void find(int now,int len,int ok)
{
if(ok==len)
{
sum++;
return;
}
for(int i=now+;i<=n;++i)
if(t[ok+]==s[i]) find(i,len,ok+);
} void dfs(int len)
{
for(int i=;i<;++i)
{
tt[len]=char(i+'a');
L=;
for(int j=len;j;--j) t[++L]=tt[j];
for(int j=;j<=len;++j) t[++L]=tt[j];
sum=;
find(,L,);
if(sum>) ans+=sum-;
if(sum) dfs(len+);
}
} void dfs2(int len)
{
for(int i=;i<;++i)
{
tt[len]=char(i+'a');
L=;
for(int j=len;j;--j) t[++L]=tt[j];
for(int j=;j<=len;++j) t[++L]=tt[j];
sum=;
find(,L,);
if(sum>) ans+=sum-;
if(sum) dfs2(len+);
}
} int main()
{
freopen("library.in","r",stdin);
freopen("library.out","w",stdout);
scanf("%s",s+);
n=strlen(s+);
for(int i=;i<=n;++i) cnt[s[i]-'a']++;
dfs();
dfs2();
printf("%d",ans);
}

cdqz2017-test10-加帕里图书馆(区间DP & 简单容斥)的更多相关文章

  1. 2019.02.09 bzoj2560: 串珠子(状压dp+简单容斥)

    传送门 题意简述:nnn个点的带边权无向图,定义一个图的权值是所有边的积,问所有nnn个点都连通的子图的权值之和. 思路: fif_ifi​表示保证集合iii中所有点都连通其余点随意的方案数. gig ...

  2. 青云的机房组网方案(简单+普通+困难)(虚树+树形DP+容斥)

    题目链接 1.对于简单的版本n<=500, ai<=50 直接暴力枚举两个点x,y,dfs求x与y的距离. 2.对于普通难度n<=10000,ai<=500 普通难度解法挺多 ...

  3. [UOJ422][集训队作业2018]小Z的礼物——轮廓线DP+min-max容斥

    题目链接: [集训队作业2018]小Z的礼物 题目要求的就是最后一个喜欢的物品的期望得到时间. 根据$min-max$容斥可以知道$E(max(S))=\sum\limits_{T\subseteq ...

  4. $HDU$ 4336 $Card\ Collector$ 概率$dp$/$Min-Max$容斥

    正解:期望 解题报告: 传送门! 先放下题意,,,已知有总共有$n$张卡片,每次有$p_i$的概率抽到第$i$张卡,求买所有卡的期望次数 $umm$看到期望自然而然想$dp$? 再一看,哇,$n\le ...

  5. bzoj3622已经没有什么好害怕的了 dp+组合+容斥(?)

    3622: 已经没有什么好害怕的了 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1033  Solved: 480[Submit][Status][ ...

  6. BZOJ4361 isn 树状数组、DP、容斥

    传送门 不考虑成为非降序列后停止的限制,那么答案显然是\(\sum\limits_{i=1}^N cnt_i \times (N-i)!\),其中\(cnt_i\)表示长度为\(i\)的非降序列数量 ...

  7. 洛谷P4859 已经没有什么好害怕的了 [DP,容斥]

    传送门 思路 大佬都说这是套路题--嘤嘤嘤我又被吊打了\(Q\omega Q\) 显然,这题是要\(DP\)的. 首先思考一下性质: 为了方便,下面令\(k=\frac{n+k}{2}\),即有恰好\ ...

  8. CodeForces - 285E: Positions in Permutations(DP+组合数+容斥)

    Permutation p is an ordered set of integers p1,  p2,  ...,  pn, consisting of n distinct positive in ...

  9. 【HDOJ5519】Kykneion asma(状压DP,容斥)

    题意:给定n和a[i](i=0..4),求所有n位5进制数中没有前导0且i出现的次数不超过a[i]的数的个数 2<=n<=15000,0<=a[i]<=3e4 思路:设f(n, ...

随机推荐

  1. [转帖]召冠总的 SQLSERVER常用的性能诊断语句. --保存学习备查

    CopyFrom https://www.cnblogs.com/zhaoguan_wang /*常规服务器动态管理对象包括:dm_db_*:数据库和数据库对象dm_exec_*:执行用户代码和关联的 ...

  2. parent()、parents()和parentsUntil()的区别

    1.parent() 返回被选元素的直接父元素,该方法只会向上一级对 DOM 树进行遍历: 2.parents() 返回被选元素的所有祖先元素,它一路向上直到文档的根元素 (<html>) ...

  3. 浅谈cpu.idle和cpu.load

    1.概述 大家经常对一个系统的容量进行评估时,会参考cpu.idle和cpu.load指标,但是这两个指标到底在什么区间,表示系统是正常或者异常呢,业内有不同的说法.因此本文搜集一些资料,并对一个系统 ...

  4. ActiveMA在CentOS7下的安装

    下载:apache-activemq-5.14.0-bin.tar.gz http://activemq.apache.org/activemq-5157-release.html Getting t ...

  5. linux 环境下 firefox乱码问题解决

    https://blog.csdn.net/wlwlwlwl015/article/details/51482065

  6. Docker容器从一知半解到入门

    Docker是一个开源的.跨平台的应用容器引擎,可以让技术开发认用打包他们的应用以及一些依赖包到一个可移植的容器平台中,发布到任何流行的Linux操作系统上面,也可以在Windows和mac操作系统上 ...

  7. 当你觉得大学没学到Linux时的感想

    你的大学生活是什么样的呢?你在大学有学到特殊的技能吗?你可以在大学毕业的时候找到一份满意的工作吗?当这些问题摆在你面前的时候,你会迷茫吗,绝大多数的人在毕业的时候并不能找到一份好的工作,那不是因为你的 ...

  8. 平衡树及笛卡尔树讲解(旋转treap,非旋转treap,splay,替罪羊树及可持久化)

    在刷了许多道平衡树的题之后,对平衡树有了较为深入的理解,在这里和大家分享一下,希望对大家学习平衡树能有帮助. 平衡树有好多种,比如treap,splay,红黑树,STL中的set.在这里只介绍几种常用 ...

  9. 自学Aruba1.5-Aruba体系结构-Aruba通讯过程

    点击返回:自学Aruba之路 自学Aruba1.5-Aruba体系结构-Aruba通讯过程 1. Aruba通讯过程 Aruba 通讯过程: ①AP连接到现有网络的交换机端口,加电起动后,获得IP地址 ...

  10. 架构师成长之路7.1 CDN理论

    点击返回架构师成长之路 架构师成长之路7.1 CDN理论 CDN,Content Distribute Network,内容分发网络:CDN解决的是如何将数据快速可靠从源站传递到用户的问题.用户获取数 ...