给定一个由小写字母组成的字符串,输出有多少重复的回文子序列

#include<cstdio>
#include<cstring> using namespace std; #define N 2002 const int mod=1e9+; int n;
char s[N]; int f[N][N],g[N][N]; int pre[N][],nxt[N][]; int get_f(int l,int r)
{
if(l>r) return ;
int &ans=f[l][r];
if(ans!=-) return ans;
if(s[l]==s[r]) ans=get_f(l+,r)+get_f(l,r-);
else ans=get_f(l+,r)+get_f(l,r-)-get_f(l+,r-);
ans%=mod;
if(ans<) ans+=mod;
return ans;
} int get_g(int l,int r)
{
if(l==r) return ;
if(l>r) return ;
int &ans=g[l][r];
if(ans!=-) return ans;
if(s[l]!=s[r]) ans=get_g(l+,r)+get_g(l,r-)-get_g(l+,r-);
else
{
if(nxt[l][s[l]-'a']>=r && pre[r][s[r]-'a']<=l) ans=get_g(l+,r-)*+;
else if(nxt[l][s[l]-'a']==pre[r][s[r]-'a']) ans=get_g(l+,r-)*;
else ans=get_g(l+,r-)*-get_g(nxt[l][s[l]-'a']+,pre[r][s[r]-'a']-);
}
ans%=mod;
if(ans<) ans+=mod;
return ans;
} void cal()
{
for(int i=;i<=n;++i)
{
for(int j=i+;j<=n;++j)
if(!nxt[i][s[j]-'a']) nxt[i][s[j]-'a']=j;
for(int j=i-;j;--j)
if(!pre[i][s[j]-'a']) pre[i][s[j]-'a']=j;
}
} int main()
{
freopen("library.in","r",stdin);
freopen("library.out","w",stdout);
scanf("%s",s+);
n=strlen(s+);
memset(f,-,sizeof(f));
int all=get_f(,n);
cal();
memset(g,-,sizeof(g));
int dif=get_g(,n);
int ans=all-dif;
if(ans<) ans+=mod;
printf("%d",ans);
}

爆搜代码

#include<cstdio>
#include<cstring> using namespace std; int n;
char s[]; char tt[],t[];
int L; int ans,sum; int cnt[]; void find(int now,int len,int ok)
{
if(ok==len)
{
sum++;
return;
}
for(int i=now+;i<=n;++i)
if(t[ok+]==s[i]) find(i,len,ok+);
} void dfs(int len)
{
for(int i=;i<;++i)
{
tt[len]=char(i+'a');
L=;
for(int j=len;j;--j) t[++L]=tt[j];
for(int j=;j<=len;++j) t[++L]=tt[j];
sum=;
find(,L,);
if(sum>) ans+=sum-;
if(sum) dfs(len+);
}
} void dfs2(int len)
{
for(int i=;i<;++i)
{
tt[len]=char(i+'a');
L=;
for(int j=len;j;--j) t[++L]=tt[j];
for(int j=;j<=len;++j) t[++L]=tt[j];
sum=;
find(,L,);
if(sum>) ans+=sum-;
if(sum) dfs2(len+);
}
} int main()
{
freopen("library.in","r",stdin);
freopen("library.out","w",stdout);
scanf("%s",s+);
n=strlen(s+);
for(int i=;i<=n;++i) cnt[s[i]-'a']++;
dfs();
dfs2();
printf("%d",ans);
}

cdqz2017-test10-加帕里图书馆(区间DP & 简单容斥)的更多相关文章

  1. 2019.02.09 bzoj2560: 串珠子(状压dp+简单容斥)

    传送门 题意简述:nnn个点的带边权无向图,定义一个图的权值是所有边的积,问所有nnn个点都连通的子图的权值之和. 思路: fif_ifi​表示保证集合iii中所有点都连通其余点随意的方案数. gig ...

  2. 青云的机房组网方案(简单+普通+困难)(虚树+树形DP+容斥)

    题目链接 1.对于简单的版本n<=500, ai<=50 直接暴力枚举两个点x,y,dfs求x与y的距离. 2.对于普通难度n<=10000,ai<=500 普通难度解法挺多 ...

  3. [UOJ422][集训队作业2018]小Z的礼物——轮廓线DP+min-max容斥

    题目链接: [集训队作业2018]小Z的礼物 题目要求的就是最后一个喜欢的物品的期望得到时间. 根据$min-max$容斥可以知道$E(max(S))=\sum\limits_{T\subseteq ...

  4. $HDU$ 4336 $Card\ Collector$ 概率$dp$/$Min-Max$容斥

    正解:期望 解题报告: 传送门! 先放下题意,,,已知有总共有$n$张卡片,每次有$p_i$的概率抽到第$i$张卡,求买所有卡的期望次数 $umm$看到期望自然而然想$dp$? 再一看,哇,$n\le ...

  5. bzoj3622已经没有什么好害怕的了 dp+组合+容斥(?)

    3622: 已经没有什么好害怕的了 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1033  Solved: 480[Submit][Status][ ...

  6. BZOJ4361 isn 树状数组、DP、容斥

    传送门 不考虑成为非降序列后停止的限制,那么答案显然是\(\sum\limits_{i=1}^N cnt_i \times (N-i)!\),其中\(cnt_i\)表示长度为\(i\)的非降序列数量 ...

  7. 洛谷P4859 已经没有什么好害怕的了 [DP,容斥]

    传送门 思路 大佬都说这是套路题--嘤嘤嘤我又被吊打了\(Q\omega Q\) 显然,这题是要\(DP\)的. 首先思考一下性质: 为了方便,下面令\(k=\frac{n+k}{2}\),即有恰好\ ...

  8. CodeForces - 285E: Positions in Permutations(DP+组合数+容斥)

    Permutation p is an ordered set of integers p1,  p2,  ...,  pn, consisting of n distinct positive in ...

  9. 【HDOJ5519】Kykneion asma(状压DP,容斥)

    题意:给定n和a[i](i=0..4),求所有n位5进制数中没有前导0且i出现的次数不超过a[i]的数的个数 2<=n<=15000,0<=a[i]<=3e4 思路:设f(n, ...

随机推荐

  1. Vue的filter属性

    Vue.filter('sss',function(data){ //可以使用逻辑处理数据 data += '123'; return data*10; }) new Vue({ el:'#app', ...

  2. docker:Dockerfile构建LNMP平台

    docker:Dockerfile构建LNMP平台   1.dockerfile介绍  Dockerfile是Docker用来构建镜像的文本文件,包含自定义的指令和格式.可以通过docker buil ...

  3. ItemsControl的两种数据绑定方式

    最近在学习ItemsControl这个控件的时候,查看了MSDN上面的一个例子,并且自己做了一些修改,这里主要使用了两种方式来进行相应的数据绑定,一种是使用DataContext,另外一种是直接将一个 ...

  4. 线性代数的本质与几何意义 01. 向量是什么?(3blue1brown 咪博士 图文注解版)

    向量是线性代数最基础.最基本的概念之一,要深入理解线性代数的本质,首先就要搞清楚向量到底是什么? 向量之所以让人迷糊,是因为我们在物理.数学,以及计算机等许多地方都见过它,但又没有彻底弄懂,以至于似是 ...

  5. Delphi导出数据的多种方法

    //Dxdbgrid,则直接用SaveToexcel即可//使用 ExcelWithOdbc 控件function TDataModule1.GetDataToFile(DsData: TObject ...

  6. python之datetime类

    datetime.time时间类,一般用于显示当地时间 import datetime # 新建对象 datetime_obj = datetime.time(hour=12, minute=20, ...

  7. matlab数据导入verilog仿真

    Matlab中的fopen和fprintf函数可以生成txt格式文件,并将波形数据以 %d 整数 %e 实数:科学计算法形式 %f 实数:小数形式 %g 由系统自动选取上述两种格式之一 %s 输出字符 ...

  8. Codeforces Round #545 (Div. 1)

    本来开头两道题写得挺快的,然后第三题想了一会儿胡出一个scc计算gcd的做法,写了一发凭借信仰交了上去结果一发pp了?然后第四题沙雕了想了很久才会,于是罚时瞬间变多.结果后面两题都没时间看了,赛后感觉 ...

  9. Galaxy S10使用几乎零黑边框的OLED显示屏

    2019年的首波安卓旗舰中,目前关于三星Galaxy S10的爆料是最多的,在销量连续萎缩后,外界对手机一哥的“发力之作”充满期待. 据TheElec报道,Galaxy S10正面使用的是一块几乎零黑 ...

  10. Luogu5155 USACO18DEC Balance Beam(概率期望+凸包)

    假设已经求出了在每个点的最优期望收益,显然最优策略是仅当移动一次后的期望收益>当前点收益时移动.对于初始点,其两边各存在一个最近的不满足上述条件的位置,因此从初始点开始随机游走,直到移动到这两个 ...