Expm 9_2 有向图的强连通分量问题
【问题描述】
给定一个有向图,设计一个算法,求解并输出该图的各个强连通分量。
package org.xiu68.exp.exp9; import java.util.ArrayList;
import java.util.List;
import java.util.Stack; public class Exp9_2 {
public static void main(String[] args) {
int[][] graph=new int[][]{
{0,1,1,0,0},
{1,0,0,0,0},
{0,0,0,1,0},
{0,0,0,0,1},
{0,0,1,0,0}
};
MGraph m1=new MGraph(graph, 5);
m1.getSccs();
}
} class MGraph{
private int[][] graph; //有向图
private int[][] rGraph; //有向图的反向图
private int vexNum; //顶点数量
Stack<Integer> stack; //存储反向图深度优先遍历的post值,从大到小排序 public MGraph(int[][] graph,int vertexNum){
this.graph=graph;
this.vexNum=vertexNum;
stack=new Stack<>();
rGraph=new int[vexNum][vexNum]; //反向图 //求原图的反向图
for(int i=0;i<vexNum;i++){
for(int j=i+1;j<vexNum;j++){
rGraph[i][j]=graph[j][i];
rGraph[j][i]=graph[i][j];
}
}
} public void getSccs(){
rDFSTraverse(); //先对反向图进行深度优先遍历 boolean[] visited=new boolean[vexNum]; //记录深度优先遍历原图过程中已经访问的顶点 List<List<Integer>> sccs=new ArrayList<>(); //存放每一个强连通部件对应的顶点
int n=0; //第几个强连通部件
while(!stack.isEmpty()){
int v=stack.pop();
if(!visited[v]){
sccs.add(new ArrayList<Integer>());
DFS(visited,v,sccs,n);
n++;
}
}
//打印强连通部件
for(int i=0;i<sccs.size();i++){
System.out.print("第"+i+"个强连通部件:");
for(int j=0;j<sccs.get(i).size();j++){
System.out.print(sccs.get(i).get(j)+" ");
}
System.out.println();
}
}
/*
* 对原图进行深度优先遍历
* 在汇点强连通部件中对某个顶点进行深度优先遍历则刚好访问该强连通部件的所有顶点
*/
private void DFS(boolean[] visited,int v,List<List<Integer>> sccs,int n){
sccs.get(n).add(v);
visited[v]=true;
for(int i=0;i<vexNum;i++){
if(graph[v][i]==1 && !visited[i])
DFS(visited,i,sccs,n);
}
} //**************************************************************
/*
* 对反向图进行深度优先遍历,post值最大的顶点将位于反向图中的一个源点强连通部件,
* 也就是原图中的某个汇点连通部件的某个顶点
* 求得各个顶点的post值,压入栈中
*/
public void rDFSTraverse(){
boolean[] visited=new boolean[vexNum];
for(int i=0;i<vexNum;i++){
if(!visited[i]){
rDFS(visited,stack,i);
}
}
}
//对反向图做深度优先遍历
private void rDFS(boolean[] visited,Stack<Integer> stack,int v){
visited[v]=true;
for(int i=0;i<vexNum;i++){
if(rGraph[v][i]==1 && !visited[i]){
rDFS(visited,stack,i);
}
}
stack.push(v);
}
}
Expm 9_2 有向图的强连通分量问题的更多相关文章
- UVA247- Calling Circles(有向图的强连通分量)
题目链接 题意: 给定一张有向图.找出全部强连通分量,并输出. 思路:有向图的强连通分量用Tarjan算法,然后用map映射,便于输出,注意输出格式. 代码: #include <iostrea ...
- 『Tarjan算法 有向图的强连通分量』
有向图的强连通分量 定义:在有向图\(G\)中,如果两个顶点\(v_i,v_j\)间\((v_i>v_j)\)有一条从\(v_i\)到\(v_j\)的有向路径,同时还有一条从\(v_j\)到\( ...
- 图->连通性->有向图的强连通分量
文字描述 有向图强连通分量的定义:在有向图G中,如果两个顶点vi,vj间(vi>vj)有一条从vi到vj的有向路径,同时还有一条从vj到vi的有向路径,则称两个顶点强连通(strongly co ...
- DFS的运用(二分图判定、无向图的割顶和桥,双连通分量,有向图的强连通分量)
一.dfs框架: vector<int>G[maxn]; //存图 int vis[maxn]; //节点访问标记 void dfs(int u) { vis[u] = ; PREVISI ...
- uva11324 有向图的强连通分量+记忆化dp
给一张有向图G, 求一个结点数最大的结点集,使得该结点集中任意两个结点u和v满足,要么u可以到达v, 要么v可以到达u(u和v相互可达也可以). 因为整张图可能存在环路,所以不好使用dp直接做,先采用 ...
- 图论-求有向图的强连通分量(Kosaraju算法)
求有向图的强连通分量 Kosaraju算法可以求出有向图中的强连通分量个数,并且对分属于不同强连通分量的点进行标记. (1) 第一次对图G进行DFS遍历,并在遍历过程中,记录每一个点的退出顺序 ...
- Kosaraju算法 有向图的强连通分量
有向图的强连通分量即,在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...
- 【数据结构】DFS求有向图的强连通分量
用十字链表结构写的,根据数据结构书上的描述和自己的理解实现.但理解的不透彻,所以不知道有没有错误.但实验了几个都ok. #include <iostream> #include <v ...
- POJ 1236 Network of Schools (有向图的强连通分量)
Network of Schools Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 9073 Accepted: 359 ...
随机推荐
- 【POJ3017】Cut the Sequence
题目大意:给定一个长度为 N 的序列,将序列划分成若干段,保证每段之和不超过 M,问所有段的最大值之和最小是多少. 题解:设 \(f[i]\) 表示前 i 个数满足上述条件的最优解,显然有状态转移方程 ...
- MySQL命令 导出 数据和结构
网上的真是仅供参考,啥也不想说. //先找到mysqldump的目录 //Centos7中位于 /usr/bin 中 然后执行命令: cd /user/bin mysqldump -u [用户名] - ...
- grafana-zabbix部署和使用
grafana-zabbix安装 官网安装介绍地址:https://grafana.com/plugins/alexanderzobnin-zabbix-app/installation 下载地址:h ...
- 收到offer!
今天收到了自己中意的offer,公司在上海,这也意味着自己毕业后的第一份工作也要结束了. 要说再见了,杭州,尽管相处的时间不久,也认识了一些朋友.还得向他们做声道别. 心情滋味难名,短短的一年,自己由 ...
- iPhone电源键坏了怎么开机和关机?
一.开机 1.将USB数据线插到iPhone上,此时先不要将另一头插到电脑上 2.长按Home键不要动 3.将数据线的另一头插到电脑上 这时iPhone就会自动开机 二.关机 1.进入设置找到“通用” ...
- ibatis (mybatis) for循环拼接语句【转】
使用 , 拼接 查询条件dto public class queryCondition{ private String[] stuIds; private String name;} 查询sqlMap ...
- python 爆破
python 爆破 #!/usr/bin/python #-*- coding: GB2312 -*- #author:loversorry import urllib2 import urllib ...
- Storm Topology 提交 总结---Kettle On Storm 实现
一,目的 在学习的过程中,需要用到 PDI---一个开源的ETL软件.主要是用它来设计一些转换流程来处理数据.但是,在PDI中设计好的 transformation 是在本地的执行引擎中执行的,(参考 ...
- Keil5下载STM32库
1.http://www.keil.com/dd2 2.3.以STM32L051C8为例 下载即可.
- 目标提取深度神经网络分析权衡 trade offs
RCNN: 直接使用object proposal 方法得到image crops 送入神经网络中,但是crops 的大小不一样,因此使用 ROI Pooling,这个网络层可以把不同大小的输入映射到 ...