CF2B The least round way(dp+记录路径)
2 seconds
64 megabytes
standard input
standard output
There is a square matrix n × n, consisting of non-negative integer numbers. You should find such a way on it that
- starts in the upper left cell of the matrix;
- each following cell is to the right or down from the current cell;
- the way ends in the bottom right cell.
Moreover, if we multiply together all the numbers along the way, the result should be the least "round". In other words, it should end in the least possible number of zeros.
The first line contains an integer number n (2 ≤ n ≤ 1000), n is the size of the matrix. Then follow n lines containing the matrix elements (non-negative integer numbers not exceeding 109).
In the first line print the least number of trailing zeros. In the second line print the correspondent way itself.
3
1 2 3
4 5 6
7 8 9
0
DDRR
题意:给你一个n*n的矩阵 只能向下或者向右 问你从左上角走到左下角 你走过路径上数字的乘积尾部0个数最少的走法
思路:我们知道只有2和5的组合可以让尾部为0 所以我们可以预处理每个数字有多少个2和5 然后很容易得出方程dp[i][j][0/1]=min(dp[i-1][j][0/1],dp[i][j-1][0/1])+a[i][j][0/1]
值得注意的是 如果其中有出现0这个数字 那么就表示 只要经过这个点 那么尾部0的个数必然是1 那么答案就只能在0或者1中产生
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<string>
#include<vector>
#include<stack>
#include<bitset>
#include<cstdlib>
#include<cmath>
#include<set>
#include<list>
#include<deque>
#include<map>
#include<time.h>
#include<queue>
#define ll long long int
using namespace std;
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
int moth[]={,,,,,,,,,,,,};
int dir[][]={, ,, ,-, ,,-};
int dirs[][]={, ,, ,-, ,,-, -,- ,-, ,,- ,,};
const int inf=0x3f3f3f3f;
const ll mod=1e9+;
int dp[][][]; //0表示2的个数 1表示5的个数
int a[][]; //存矩阵
bool f=;
struct node{
int x;int y;
};
node path2[][]; //记录2的个数最少时的路径
node path1[][]; //记录5的个数最少时的路径
node ans[];
int cnt=;
void output1(node x){ //记录答案
if(x.x==&&x.y==) return ;
node t; t=path1[x.x][x.y];
output1(t);
ans[++cnt]=x;
}
void output2(node x){ //记录答案
if(x.x==&&x.y==) return ;
node t; t=path2[x.x][x.y];
output2(t);
ans[++cnt]=x;
}
int main(){
ios::sync_with_stdio(false);
int n;
cin>>n;
int posx,posy;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++){
cin>>a[i][j];
int t=a[i][j];
if(t==){ //一但出现零我们需要标记一下
f=;
dp[i][j][]++;
dp[i][j][]++;
posx=i;
posy=j;
continue;
}
while(){ //统计2 和 5 的个数
if(t%==){
t/=;
dp[i][j][]++;
}else if(t%==){
t/=;
dp[i][j][]++;
}else{
break;
}
}
}
for(int i=;i<=n;i++){ // 预处理边界
dp[][i][]+=dp[][i-][];
dp[][i][]+=dp[][i-][];
node t; t.x=; t.y=i-;
path1[][i]=path2[][i]=t;
dp[i][][]+=dp[i-][][];
dp[i][][]+=dp[i-][][];
t.x=i-; t.y=;
path1[i][]=path2[i][]=t;
}
path1[][].x=path2[][].x=;
path1[][].y=path2[][].y=;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++){ //递推
if(dp[i-][j][]<dp[i][j-][]){
dp[i][j][]=dp[i-][j][]+dp[i][j][];
node temp; temp.x=i-; temp.y=j;
path1[i][j]=temp;
}else{
dp[i][j][]=dp[i][j-][]+dp[i][j][];
node temp; temp.x=i; temp.y=j-;
path1[i][j]=temp;
}
}
for(int i=;i<=n;i++)
for(int j=;j<=n;j++){ //递推
if(dp[i-][j][]<dp[i][j-][]){
dp[i][j][]=dp[i-][j][]+dp[i][j][];
node temp; temp.x=i-; temp.y=j;
path2[i][j]=temp;
}else{
dp[i][j][]=dp[i][j-][]+dp[i][j][];
node temp; temp.x=i; temp.y=j-;
path2[i][j]=temp;
}
}
int minn=min(dp[n][n][],dp[n][n][]);
if(minn>&&f){ //表示尾部零最小的个数就是1 那么我们就可以直接输出
cout<<""<<endl;
for(int i=;i<posx;i++)
cout<<"D";
for(int j=;j<posy;j++)
cout<<"R";
for(int i=posx;i<n;i++)
cout<<"D";
for(int j=posy;j<n;j++)
cout<<"R";
cout<<endl;
return ;
}
cout<<minn<<endl;
node e; e.x=n; e.y=n;
if(dp[n][n][]<dp[n][n][])
output1(e);
else{
output2(e);
}
for(int i=;i<=cnt;i++){
if(ans[i].x==ans[i-].x+)
cout<<"D";
else
cout<<"R";
}
cout<<endl;
return ;
}
CF2B The least round way(dp+记录路径)的更多相关文章
- PAT L3-001 凑零钱(01背包dp记录路径)
韩梅梅喜欢满宇宙到处逛街.现在她逛到了一家火星店里,发现这家店有个特别的规矩:你可以用任何星球的硬币付钱,但是绝不找零,当然也不能欠债.韩梅梅手边有104枚来自各个星球的硬币,需要请你帮她盘算一下,是 ...
- Codeforces Round #436 (Div. 2) E. Fire(dp 记录路径)
E. Fire time limit per test 2 seconds memory limit per test 256 megabytes input standard input outpu ...
- hdu 1074(状态压缩dp+记录路径)
题意:给了n个家庭作业,然后给了每个家庭作业的完成期限和花费的实践,如果完成时间超过了期限,那么就要扣除分数,然后让你找出一个最优方案使扣除的分数最少,当存在多种方案时,输出字典序最小的那种,因为题意 ...
- [CF2B] The least round way - dp
给定由非负整数组成的n×n 的正方形矩阵,你需要寻找一条路径: 以左上角为起点 每次只能向右或向下走 以右下角为终点 并且,如果我们把沿路遇到的数进行相乘,积应当是最小"round" ...
- uva 10453 - Make Palindrome(dp, 记录路径)
题目 题意: 给一个字符串 ,判断最少插入多少个字符 使字符串成为回文串, 并输出回文串. 思路:先用dp判断需要个数, 再递归输出路径. #include <iostream> #inc ...
- codeforces 1272F dp+记录路径
题意 给出两个括号序列 \(S\) 和 \(T\),让你构造一个最短的合法括号序列使 \(S\) 和 \(T\) 是它的子序列. 分析 设 \(dp[i][j][k]\) 为这个最短的合法括号序列的前 ...
- POJ 题目1141 Brackets Sequence(区间DP记录路径)
Brackets Sequence Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 27793 Accepted: 788 ...
- POJ 2111 DP+记录路径
题意: 思路: 类似滑雪 //By SiriusRen #include <cstdio> #include <cstring> #include <algorithm& ...
- hdu1074 状压DP、栈实现记录路径
题意:给了几门学科作业.它们的截止提交期限(天数).它们的需要完成的时间(天数),每项作业在截止日期后每拖延一天扣一学分,算最少扣的学分和其完成顺序. 一开始做的时候,只是听说过状态压缩这个神奇的东西 ...
随机推荐
- Android冷启动优化
我们知道新打开一个应用的时候,会出现短暂的白屏或者黑屏,严重影响到我们的用户体验,其实这个过程是launcher启动新进程,进程中启动activity时,会先绑定window,然后使用默认的windo ...
- 常用Shell脚本命令(备忘)
此处纪录一些个人常用的Shell命令,留作复用 Linux 必备软件 Tmux 终端复用神器 zsh 无比强大Shell运行环境 oh my zsh 搭配zsh食用 uGet Linux下载工具 Do ...
- 会话固定攻击 - yxcms session固定漏洞
目录 会话固定攻击 e.g. yxcms session固定攻击 分析 了解更多 会话固定攻击 Session fixation attack(会话固定攻击)是利用服务器的session不变机制,借他 ...
- KASAN实现原理【转】
1. 前言 KASAN是一个动态检测内存错误的工具.KASAN可以检测全局变量.栈.堆分配的内存发生越界访问等问题.功能比SLUB DEBUG齐全并且支持实时检测.越界访问的严重性和危害性通过我之前的 ...
- c/c++ 多线程 等待一次性事件 std::promise用法
多线程 等待一次性事件 std::promise用法 背景:不是很明白,不知道为了解决什么业务场景,感觉std::async可以优雅的搞定一切的一次等待性事件,为什么还有个std::promise. ...
- SQLServer之创建Transact-SQL DDL触发器
DDL触发器原理 DDL 触发器用于响应各种数据定义语言 (DDL) 事件. 这些事件主要与以关键字 CREATE.ALTER.DROP.GRANT.DENY.REVOKE 或 UPDATE STAT ...
- eclipse 中 git 解决冲突(重点)
Eclipse 中 GIT 提交代码时的冲突困扰了我很久,说实在的,真的感觉 GIT 太特么难用了,尤其是提交代码时(或许还没习惯吧).特此,写一篇博文记录一下自己使用 GIT 决解冲突的问题,希望能 ...
- 数据库【mysql】之pymysql
安装模块 pip install pymysql 导入模块 import pymysql 创建链接 conn = pymysql.connect(host=') 创建索引 cursor = conn. ...
- jspdf生成pdf并在页面展示
jspdf调用ouput即可 https://blog.csdn.net/dragonzoebai/article/details/18243823 获取页面生成pdf:jspdf+html2canv ...
- 部署Java和Tomcat
Tomcat介绍 Tomcat服务器是一个免费的开放源代码的Web应用服务器,在中小型系统和并发访问用户不是很多的场合下被普遍使用,是开发和调试JSP网页的首选. Tomcat和Nginx.Apach ...