POJ 2031 Building a Space Station (计算几何+最小生成树)
题目:
Description
The space station is made up with a number of units, called cells. All cells are sphere-shaped, but their sizes are not necessarily uniform. Each cell is fixed at its predetermined position shortly after the station is successfully put into its orbit. It is quite strange that two cells may be touching each other, or even may be overlapping. In an extreme case, a cell may be totally enclosing another one. I do not know how such arrangements are possible.
All the cells must be connected, since crew members should be able to walk from any cell to any other cell. They can walk from a cell A to another cell B, if, (1) A and B are touching each other or overlapping, (2) A and B are connected by a `corridor', or (3) there is a cell C such that walking from A to C, and also from B to C are both possible. Note that the condition (3) should be interpreted transitively.
You are expected to design a configuration, namely, which pairs of cells are to be connected with corridors. There is some freedom in the corridor configuration. For example, if there are three cells A, B and C, not touching nor overlapping each other, at least three plans are possible in order to connect all three cells. The first is to build corridors A-B and A-C, the second B-C and B-A, the third C-A and C-B. The cost of building a corridor is proportional to its length. Therefore, you should choose a plan with the shortest total length of the corridors.
You can ignore the width of a corridor. A corridor is built between points on two cells' surfaces. It can be made arbitrarily long, but of course the shortest one is chosen. Even if two corridors A-B and C-D intersect in space, they are not considered to form a connection path between (for example) A and C. In other words, you may consider that two corridors never intersect.
Input
n
x1 y1 z1 r1
x2 y2 z2 r2
...
xn yn zn rn
The first line of a data set contains an integer n, which is the number of cells. n is positive, and does not exceed 100.
The following n lines are descriptions of cells. Four values in a line are x-, y- and z-coordinates of the center, and radius (called r in the rest of the problem) of the sphere, in this order. Each value is given by a decimal fraction, with 3 digits after the decimal point. Values are separated by a space character.
Each of x, y, z and r is positive and is less than 100.0.
The end of the input is indicated by a line containing a zero.
Output
Note that if no corridors are necessary, that is, if all the cells are connected without corridors, the shortest total length of the corridors is 0.000.
Sample Input
3
10.000 10.000 50.000 10.000
40.000 10.000 50.000 10.000
40.000 40.000 50.000 10.000
2
30.000 30.000 30.000 20.000
40.000 40.000 40.000 20.000
5
5.729 15.143 3.996 25.837
6.013 14.372 4.818 10.671
80.115 63.292 84.477 15.120
64.095 80.924 70.029 14.881
39.472 85.116 71.369 5.553
0
Sample Output
20.000
0.000
73.834
题意:
给出n个圆 如果两圆相交 则两圆间距离为0 求最小生成树 思路:
先用计算几何内容求出任意两圆间距离 然后连边 如果两圆相交 mp[i][j]=0 如果两圆不相交 mp[i][j]=两圆距离-两圆半径和
处理成矩阵图 用prim算法跑最小生成树
代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm> using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int inf=0x3f3f3f3f;
const int maxn=;
const double eps=1e-;
int n;
int vis[maxn];
double mp[maxn][maxn],dis[maxn]; int dps(double x){
if(fabs(x)<eps) return ;
return x>?:-;
} struct Point{
double x,y,z,r;
}kk[maxn]; double len(Point a,Point b){
return sqrt((b.x-a.x)*(b.x-a.x)+(b.y-a.y)*(b.y-a.y)+(b.z-a.z)*(b.z-a.z));
} int main(){
while(~scanf("%d",&n)){
if(n==) break;
memset(mp,,sizeof(mp));
memset(dis,,sizeof(dis));
memset(vis,,sizeof(vis));
for(int i=;i<=n;i++){
scanf("%lf%lf%lf%lf",&kk[i].x,&kk[i].y,&kk[i].z,&kk[i].r);
}
for(int i=;i<=n;i++){
dis[i]=(double)inf;
for(int j=i+;j<=n;j++){
double tmp=len(kk[i],kk[j]);
double tmp2=kk[i].r+kk[j].r;
if(dps(tmp-tmp2)<=) mp[i][j]=mp[j][i]=0.0;
else mp[i][j]=mp[j][i]=tmp-tmp2;
}
}
for(int i=;i<=n;i++){
dis[i]=mp[][i];
}
dis[]=0.0;
vis[]=;
double sum=;
int tmp;
for(int i=;i<=n;i++){
tmp=inf;
double minn=(double)inf;
for(int j=;j<=n;j++){
if(vis[j]== && dis[j]<minn){
tmp=j;
minn=dis[j];
}
}
if(tmp==inf) break;
vis[tmp]=;
sum+=minn;
for(int j=;j<=n;j++){
if(vis[j]== && dis[j]>mp[tmp][j])
dis[j]=mp[tmp][j];
}
}
printf("%.3f\n",sum);
} return ;
}
POJ 2031 Building a Space Station (计算几何+最小生成树)的更多相关文章
- POJ 2031 Building a Space Station (最小生成树)
Building a Space Station 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/C Description Yo ...
- poj 2031 Building a Space Station【最小生成树prime】【模板题】
Building a Space Station Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 5699 Accepte ...
- POJ 2031 Building a Space Station【最小生成树+简单计算几何】
You are a member of the space station engineering team, and are assigned a task in the construction ...
- poj 2031 Building a Space Station(最小生成树,三维,基础)
只是坐标变成三维得了,而且要减去两边的半径而已 题目 //最小生成树,只是变成三维的了 #define _CRT_SECURE_NO_WARNINGS #include<stdlib.h> ...
- POJ 2031 Building a Space Station【经典最小生成树】
链接: http://poj.org/problem?id=2031 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...
- POJ 2031 Building a Space Station (最小生成树)
Building a Space Station Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 5173 Accepte ...
- POJ 2031 Building a Space Station
3维空间中的最小生成树....好久没碰关于图的东西了..... Building a Space Station Time Limit: 1000MS Memory Li ...
- POJ - 2031 Building a Space Station 三维球点生成树Kruskal
Building a Space Station You are a member of the space station engineering team, and are assigned a ...
- POJ 2031 Building a Space Station (prim裸题)
Description You are a member of the space station engineering team, and are assigned a task in the c ...
随机推荐
- 从HTTL模板引擎看软件设计原则
HTTL (Hyper-Text Template Language) 是一个高性能的开源JAVA模板引擎, 适用于动态HTML页面输出, 可替代JSP页面, 指令和Velocity相似.作者是阿里巴 ...
- 探寻 JavaScript 精度问题
阅读完本文可以了解到 0.1 + 0.2 为什么等于 0.30000000000000004 以及 JavaScript 中最大安全数是如何来的. 十进制小数转为二进制小数方法 拿 173.8125 ...
- SpringBoot整合Sqlite数据库流程
1.创建项目 方式一: 通过网站https://start.spring.io/ 方式二: 通过开发工具(IDEA或者Eclipse自行百度) 2.修改pom.xml配置文件,添加必要的驱动包 < ...
- rsync用法详细解释
提要 熟悉 rsync 的功能及其特点 掌握 rsync 语法及常用选项的功能 掌握 rsync 命令的三种基本使用方法 掌握如何筛选 rsync 的传输目标 掌握使用 rsync 进行镜像和增量备份 ...
- Cut 'em all! CodeForces - 982C(贪心dfs)
K - Cut 'em all! CodeForces - 982C 给一棵树 求最多能切几条边使剩下的子树都有偶数个节点 如果n是奇数 那么奇数=偶数+奇数 不管怎么切 都会有奇数 直接打印-1 贪 ...
- Python 常用模块大全(整理)
https://www.cnblogs.com/jpfss/p/9686050.html
- Magento 最佳开发配置
概观 典型的软件开发流程如下: 本地开发机器 > QA /集成服务器 > 预览服务器(可选)> 生产服务器 无论您是在编写新的Magento 2 扩展 还是为代码库做贡献,任何开发人 ...
- 【nginx】nginx日常命令
看下nginx命令的帮助信息 [root@localhost oa_workflow_test]# /usr/local/nginx/sbin/nginx -h nginx version: ngin ...
- NowCoder -- 牛客小白月赛10
A--勘测 推下公式 a[i] = a[i-1] + a[i-2] +2 #include<stdio.h> #include<string.h> ]; int main() ...
- 初识 go 语言
目录 go简介 安装 hello world 函数 变量 常量 可见性规则 结束 前言: 最近组内要试水区块链,初步方案定为使用fabirc来弄,而fabric的智能合约就是用go写的,借此机会正好学 ...