In my previous post, I introduced various definitions of matrix norms in \(\mathbb{R}^{n \times n}\) based on the corresponding vector norms in \(\mathbb{R}^n\). Meanwhile, the equivalence of different vector norms and their induced metrics and topologies in \(\mathbb{R}^n\) is also inherited into \(\mathbb{R}^{n \times n}\). In this article, we’ll show why the above defined matrix norms are valid.

Generally, the definition of a matrix norm in \(\mathbb{R}^{n \times n}\) should satisfy the following four conditions:

  1. Positive definiteness: for all \(A \in \mathbb{R}^{n \times n}\), \(\norm{A} \geq 0\). \(\norm{A} = 0\) if and only if \(A = 0\).
  2. Absolute homogeneity: for all \(\alpha \in \mathbb{R}\) and \(A \in \mathbb{R}^{n \times n}\), \(\norm{\alpha A} = \abs{\alpha} \norm{A}\).
  3. Triangle inequality: for all \(A, B \in \mathbb{R}^{n \times n}\), \(\norm{A + B} \leq \norm{A} + \norm{B}\).
  4. Sub-multiplicity: for all \(A, B \in \mathbb{R}^{n \times n}\), \(\norm{AB} \leq \norm{A} \norm{B}\).

Therefore, we need to prove the following theorem in order to meet the above requirements.

Theorem Let \(\norm{\cdot}\) be a norm on \(\mathbb{R}^n\). Then for all \(A \in \mathbb{R}^{n \times n}\), its matrix norm \(\zeta: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}\) can be defined as
\[
\zeta(A) = \sup_{\forall \vect{x} \in \mathbb{R}^n, \vect{x} \neq 0} \frac{\norm{A \vect{x}}}{\norm{\vect{x}}} = \sup_{\forall \vect{x} \in \mathbb{R}^n, \norm{\vect{x}}=1} \norm{A \vect{x}}
\]

Proof a) Positive definiteness and absolute homogeneity directly inherit from vector norms.

b) The triangle inequality can be proved as following.
\[
\begin{aligned}
\zeta(A + B) &= \sup_{\forall \vect{x} \in \mathbb{R}^n, \vect{x} \neq 0} \frac{\norm{(A + B) \vect{x}}}{\norm{\vect{x}}} = \sup_{\forall \vect{x} \in \mathbb{R}^n, \vect{x} \neq 0} \frac{\norm{A\vect{x} + B\vect{x}}}{\norm{\vect{x}}} \\
& \leq \sup_{\forall \vect{x} \in \mathbb{R}^n, \vect{x} \neq 0} \frac{\norm{A\vect{x}} + \norm{B\vect{x}}}{\norm{\vect{x}}} \leq \sup_{\forall \vect{x} \in \mathbb{R}^n, \vect{x} \neq 0} \frac{\norm{A\vect{x}}}{\norm{\vect{x}}} + \sup_{\forall \vect{x} \in \mathbb{R}^n, \vect{x} \neq 0} \frac{\norm{B\vect{x}}}{\norm{\vect{x}}} \\
&= \zeta(A) + \zeta(B).
\end{aligned}
\]

c) For sub-multiplicity, we have
\[
\begin{aligned}
\zeta(AB) &= \sup_{\forall \vect{x} \in \mathbb{R}^n, \vect{x} \neq 0} \frac{\norm{AB\vect{x}}}{\norm{\vect{x}}} = \sup_{\forall \vect{x} \in \mathbb{R}^n, \vect{x} \neq 0} \frac{\norm{AB\vect{x}} \norm{B\vect{x}}}{\norm{B\vect{x}}\norm{\vect{x}}} \\
&\leq \sup_{\forall \vect{x} \in \mathbb{R}^n, \vect{x} \neq 0} \frac{\norm{A\vect{x}}}{\norm{\vect{x}}} \cdot \sup_{\forall \vect{x} \in \mathbb{R}^n, \vect{x} \neq 0} \frac{\norm{B\vect{x}}}{\norm{\vect{x}}} = \norm{A} \cdot \norm{B}.
\end{aligned}
\]
d) Prove \(\zeta(A) = \sup_{\forall \vect{x} \in \mathbb{R}^n, \norm{\vect{x}} = 1} \norm{A\vect{x}}\).

Note that \(\frac{1}{\norm{\vect{x}}}\) is a scalar value in \(\mathbb{R}\), then with the proved absolute homogeneity, we have
\[
\zeta(A) = \sup_{\forall \vect{x} \in \mathbb{R}^n, \vect{x} \neq 0} \frac{\norm{A\vect{x}}}{\norm{\vect{x}}} = \sup_{\forall \vect{x} \in \mathbb{R}^n, \vect{x} \neq 0} \left\Vert A \cdot \frac{\vect{x}}{\norm{\vect{x}}} \right\Vert.
\]
By letting \(\vect{x}' = \frac{\vect{x}}{\norm{\vect{x}}}\), we have this part proved.

Summarizing a) to d), \(\norm{\cdot}\) is literally a matrix norm induced from the corresponding vector norm.

Next, we prove the validity of the detailed formulations of the matrix norms, i.e.

  1. 1-norm: \(\norm{A}_1 = \max_{1 \leq j \leq n} \sum_{i=1}^n \abs{a_{ij}}\), which is the maximum column sum;
  2. 2-norm: \(\norm{A}_2 = \sqrt{\rho(A^T A)}\), where \(\rho\) represents the spectral radius, i.e. the maximum eigenvalue of \(A^TA\);
  3. \(\infty\)-norm: \(\norm{A}_{\infty} = \max_{1 \leq i \leq n} \sum_{j=1}^n \abs{a_{ij}}\), which is the maximum row sum.

a) 1-norm: Because
\[
\begin{aligned}
\norm{A\vect{x}}_1 &= \sum_{i=1}^n \left\vert \sum_{j=1}^n a_{ij} x_j \right\vert \leq \sum_{i=1}^n \sum_{j=1}^n \abs{a_{ij} x_j} = \sum_{j=1}^n \left( \abs{x_j} \sum_{i=1}^n \abs{a_{ij}} \right) \\
&\leq \left( \sum_{j=1}^n \abs{x_j} \right) \cdot \max_{1 \leq j \leq n} \left( \sum_{i=1}^n \abs{a_{ij}} \right),
\end{aligned}
\]
we have
\[
\norm{A}_1 \leq \sup_{\forall \vect{x} \in \mathbb{R}^n, \vect{x} \neq 0} \frac{\norm{A\vect{x}}_1}{\norm{\vect{x}}_1} \leq \frac{\left( \sum_{j=1}^n \abs{x_j} \right) \cdot \max_{1 \leq j \leq n} \left( \sum_{i=1}^n \abs{a_{ij}} \right)}{\sum_{j=1}^n \abs{x_j}} = \max_{1 \leq j \leq n} \left( \sum_{i=1}^n \abs{a_{ij}} \right).
\]
Then, we need to show that the maximum value on the right hand side is achievable.

Assume that when \(j = j_0\), \(\sum_{i=1}^n \abs{a_{ij}}\) has the maximum value. If this value is zero, it means \(A\) is a zero matrix and the definition of matrix 1-norm is trivially true. If this value is not zero, by letting \(\vect{x} = (\delta_{ij_0})_{i \geq 1}^n\) with \(\delta_{ij_0}\) being the Kronecker delta, we have
\[
\frac{\norm{A\vect{x}}_1}{\norm{\vect{x}}_1} = \frac{\sum_{i=1}^n \abs{a_{ij_0}}}{1} = \max_{1 \leq j \leq n} \left( \sum_{i=1}^n \abs{a_{ij}} \right).
\]
b) 2-norm: The proof for this part needs the intervention of inner product \(\langle \cdot, \cdot \rangle\) of vectors in \(\mathbb{R}^n\), from which the vector 2-norm can be induced. Then we have
\[
\norm{A}_2 = \sup_{\forall \vect{x} \in \mathbb{R}^n, \vect{x} \neq 0} \frac{\norm{A\vect{x}}_2}{\norm{\vect{x}}_2} = \sup_{\forall \vect{x} \in \mathbb{R}^n, \vect{x} \neq 0} \sqrt{\frac{\langle A\vect{x}, A\vect{x} \rangle}{\langle \vect{x}, \vect{x} \rangle}} = \sup_{\forall \vect{x} \in \mathbb{R}^n, \vect{x} \neq 0} \sqrt{\frac{\langle A^*A\vect{x}, \vect{x} \rangle}{\langle \vect{x}, \vect{x} \rangle}},
\]
where \(A^*\) is the adjoint operator, i.e. transpose of \(A\). Therefore, \(A^*A\) is a real valued symmetric matrix which has \(n\) real eigenvalues \(\{\lambda_i\}_{i=1}^n\) with \(0 \leq \lambda_1 \leq \cdots \leq \lambda_n\) and \(n\) corresponding orthonormal eigenvectors \(\{\vect{v}_i\}_{i=1}^n\) (N.B. There may be duplicates in the eigenvalues). For all \(\vect{x} \in \mathbb{R}^n\), it can be expanded as \(\vect{x} = \sum_{i=1}^n a_i \vect{v}_i\) and \(A^*A\vect{x} = \sum_{i=1}^n a_i A^*A \vect{v}_i = \sum_{i=1}^n a_i \lambda_i \vect{v}_i\). Then we have
\[
\begin{aligned}
\langle A^*A\vect{x}, \vect{x} \rangle &= \left\langle \sum_{i=1}^n a_i \lambda_i \vect{v}_i, \sum_{j=1}^n a_j \vect{v}_j \right\rangle = \sum_{i=1}^n \sum_{j=1}^n \lambda_i a_i^2 \langle \vect{v}_i, \vect{v}_j \rangle \\
&= \sum_{i=1}^n \sum_{j=1}^n \lambda_i a_i^2 \delta_{ij} = \sum_{i=1} \lambda_i a_i^2.
\end{aligned}
\]
Meanwhile,
\[
\langle \vect{x}, \vect{x} \rangle = \left\langle \sum_{i=1}^n a_i \vect{v}_i, \sum_{j=1}^n a_j \vect{v}_j \right\rangle = \sum_{i=1}^n \sum_{j=1}^n a_i a_j \langle \vect{v}_i, \vect{v}_j \rangle = \sum_{i=1}^n a_i^2.
\]
Therefore,
\[
\frac{\norm{A\vect{x}}_2}{\norm{\vect{x}}_2} \leq \sqrt{\frac{\lambda_n \sum_{i=1}^n a_i^2}{\sum_{i=1}^n a_i^2}} = \sqrt{\lambda_n}.
\]
By letting \(a_1 = a_2 = \cdots = a_{n-1} = 0\) and \(a_n = 1\), we have \(\frac{\norm{A\vect{x}}_2}{\norm{\vect{x}}_2} = \sqrt{\lambda_n}\). Hence,
\[
\norm{A}_2 = \sqrt{\lambda_n} = \sqrt{\rho(A^*A)}
\]
and the definition of matrix 2-norm is valid.

c) \(\infty\)-norm:
\[
\begin{aligned}
\norm{A\vect{x}}_{\infty} &= \max_{1 \leq i \leq n} \left( \left\vert \sum_{j=1}^n a_{ij} x_j \right\vert \right) \leq \max_{1 \leq i \leq n} \left( \sum_{j=1}^n \abs{a_{ij}} \cdot \abs{x_j} \right) \\
&= \max_{1 \leq i \leq n} \left( \left( \sum_{j=1}^n \abs{a_{ij}} \right) \cdot \left( \max_{1 \leq j \leq n} \abs{x_j} \right) \right) = \left( \max_{1 \leq i \leq n} \sum_{j=1}^n \abs{a_{ij}} \right) \cdot \left( \max_{1 \leq j \leq n} \abs{x_j} \right) \\
\norm{\vect{x}}_{\infty} &= \max_{1 \leq i \leq n} \abs{x_i}
\end{aligned}
\]
Therefore, \(\frac{\norm{A\vect{x}}_{\infty}}{\norm{\vect{x}}_{\infty}} \leq \max_{1 \leq i \leq n} \sum_{j=1}^n \abs{a_{ij}}\). Then, we need to prove this maximum value is achievable.

Assume when \(i = i_0\), \(\sum_{j=1}^n \abs{a_{i_0 j}}\) achieves the maximum. If this value is zero, \(A\) is a zero matrix and the definition of matrix \(\infty\)-norm is trivially true. If this value is not zero, by letting \(\vect{x} = (\sgn(a_{i_0 1}), \cdots, \sgn(a_{i_0 n}))^{\rm T}\), we have \(\norm{\vect{x}}_{\infty} = 1\) and \(\norm{A\vect{x}}_{\infty} = \sum_{j=1}^n \abs{a_{i_0 j}} = \max_{1 \leq i \leq n} \sum_{j=1}^n \abs{a_{ij}}\). Hence, \(\frac{\norm{A\vect{x}}_{\infty}}{\norm{\vect{x}}_{\infty}} = \max_{1 \leq i \leq n} \sum_{j=1}^n \abs{a_{ij}}\) and the definition of \(\infty​\)-norm is valid.

Definition of matrix norms的更多相关文章

  1. James Munkres Topology: Theorem 20.3 and metric equivalence

    Proof of Theorem 20.3 Theorem 20.3 The topologies on \(\mathbb{R}^n\) induced by the euclidean metri ...

  2. CSharpGL(13)用GLSL实现点光源(point light)和平行光源(directional light)的漫反射(diffuse reflection)

    CSharpGL(13)用GLSL实现点光源(point light)和平行光源(directional light)的漫反射(diffuse reflection) 2016-08-13 由于CSh ...

  3. Numpy应用100问

    对于从事机器学习的人,python+numpy+scipy+matplotlib是重要的基础:它们基本与matlab相同,而其中最重要的当属numpy:因此,这里列出100个关于numpy函数的问题, ...

  4. Opengl的gl_NormalMatrix【转】

    原文地址:http://blog.csdn.net/ichild1964/article/details/9728357 参考:http://www.gamedev.net/topic/598985- ...

  5. Applying Eigenvalues to the Fibonacci Problem

    http://scottsievert.github.io/blog/2015/01/31/the-mysterious-eigenvalue/ The Fibonacci problem is a ...

  6. Matlab norm 用法小记

    Matlab norm 用法小记 matlab norm (a) 用法以及实例 norm(A,p)当A是向量时norm(A,p)   Returns sum(abs(A).^p)^(1/p), for ...

  7. 《Machine Learning》系列学习笔记之第二周

    第二周 第一部分 Multivariate Linear Regression Multiple Features Note: [7:25 - θT is a 1 by (n+1) matrix an ...

  8. 一些矩阵范数的subgradients

    目录 引 正交不变范数 定理1 定理2 例子:谱范数 例子:核范数 算子范数 定理3 定理4 例子 \(\ell_2\) <Subgradients> Subderivate-wiki S ...

  9. subgradients

    目录 定义 上镜图解释 次梯度的存在性 性质 极值 非负数乘 \(\alpha f(x)\) 和,积分,期望 仿射变换 仿梯度 混合函数 应用 Pointwise maximum 上确界 suprem ...

随机推荐

  1. Activity之间的跳转和数据传输

    1.显式跳转 protected void onCreate(@Nullable Bundle savedInstanceState) { super.onCreate(savedInstanceSt ...

  2. 【Unity游戏开发】记一次解决 LuaFunction has been disposed 的bug的过程

    一.引子 RT,本篇博客记录的是马三的一次解决 LuaFunction has been disposed 的bug的全过程,事情还要从马三的自研框架 ColaFrameWork 说起.最近,马三在业 ...

  3. python常用的内置函数哈哈

    python常用的内置函数集合做一个归类用的时候可以查找 abs 返回数字x的绝对值或者x的摸 all (iterable)对于可迭代的对象iterable中所有元素x都有bool(x)为true,就 ...

  4. mysql8用户管理

    查看当前登录用户: 创建用户: create user '用户名'@'主机地址' identified with mysql_native_password by '密码'; 修改密码: alter ...

  5. API设计中响应数据格式用json的优点

    通常我们再设计api返回时,都使用json格式返回,相比xml,他又有什么优点呢? 更直观易懂 占用空间更小 能与JavaScript跟好的兼容.js通过eval()进行Json读取. 支持多种语言. ...

  6. setLocale(java.util.Locale), setCharacterEncoding(java.lang.String),setContentType(java.lang.String type)

    对于setCharacterEncoding(java.lang.String),这个方法是javax.servlet.ServletRequest和javax.servlet.ServletResp ...

  7. IDEA配置github并上传项目

    https://www.cnblogs.com/jinjiyese153/p/6796668.html

  8. java笔试要点(java多线程)

    一.线程的生命周期及五种基本状态 关于Java中线程的生命周期,首先看一下下面这张较为经典的图: 上图中基本上囊括了Java中多线程各重要知识点.掌握了上图中的各知识点,Java中的多线程也就基本上掌 ...

  9. safari下载中文文件名乱码

    原因:响应头设置content-disposition,主要遵循 RFC 5987标准. response.setHeader("content-disposition",&quo ...

  10. springboo+nginx测试负载均衡

    1:之前只是用nginx调用了boot_8044这一个服务,这次新建一个boot_8055服务,并在linux上启动: 两个boot我都是放在 /myprojects 目录下的(自定义,能启动就行) ...