[Python数据挖掘]第8章、中医证型关联规则挖掘
一、背景和挖掘目标
二、分析方法与过程
1、数据获取
2、数据预处理
1.筛选有效问卷(根据表8-6的标准)
共发放1253份问卷,其中有效问卷数为930
2.属性规约
3.数据变换
'''
聚类离散化,最后的result的格式为:
1 2 3 4
A 0 0.178698 0.257724 0.351843
An 240 356.000000 281.000000 53.000000
即(0, 0.178698]有240个,(0.178698, 0.257724]有356个,依此类推。
'''
from __future__ import print_function
import pandas as pd
from sklearn.cluster import KMeans #导入K均值聚类算法 typelabel ={u'肝气郁结证型系数':'A', u'热毒蕴结证型系数':'B', u'冲任失调证型系数':'C', u'气血两虚证型系数':'D', u'脾胃虚弱证型系数':'E', u'肝肾阴虚证型系数':'F'}
k = 4 #需要进行的聚类类别数 #读取数据并进行聚类分析
data = pd.read_excel('data/data.xls') #读取数据
keys = list(typelabel.keys())
result = pd.DataFrame() if __name__ == '__main__': #判断是否主窗口运行,如果是将代码保存为.py后运行,则需要这句,如果直接复制到命令窗口运行,则不需要这句。
for i in range(len(keys)):
#调用k-means算法,进行聚类离散化
print(u'正在进行“%s”的聚类...' % keys[i])
kmodel = KMeans(n_clusters = k, n_jobs = 4) #n_jobs是并行数,一般等于CPU数较好
kmodel.fit(data[[keys[i]]].as_matrix()) #训练模型 r1 = pd.DataFrame(kmodel.cluster_centers_, columns = [typelabel[keys[i]]]) #聚类中心
r2 = pd.Series(kmodel.labels_).value_counts() #分类统计
r2 = pd.DataFrame(r2, columns = [typelabel[keys[i]]+'n']) #转为DataFrame,记录各个类别的数目
r = pd.concat([r1, r2], axis = 1).sort_values(typelabel[keys[i]]) #匹配聚类中心和类别数目
r.index = [1, 2, 3, 4] r[typelabel[keys[i]]] = pd.rolling_mean(r[typelabel[keys[i]]], 2) #rolling_mean()用来计算相邻2列的均值,以此作为边界点。
r[typelabel[keys[i]]][1] = 0.0 #这两句代码将原来的聚类中心改为边界点。
result = result.append(r.T) result.to_excel('tmp/data_processed.xls')
3、模型构建
首先准备apriori.py,代码没看懂,不过可以直接调用
#apriori代码
from __future__ import print_function
import pandas as pd #自定义连接函数,用于实现L_{k-1}到C_k的连接
def connect_string(x, ms):
x = list(map(lambda i:sorted(i.split(ms)), x))
l = len(x[0])
r = []
for i in range(len(x)):
for j in range(i,len(x)):
if x[i][:l-1] == x[j][:l-1] and x[i][l-1] != x[j][l-1]:
r.append(x[i][:l-1]+sorted([x[j][l-1],x[i][l-1]]))
return r #寻找关联规则的函数
def find_rule(d, support, confidence, ms = u'--'):
result = pd.DataFrame(index=['support', 'confidence']) #定义输出结果 support_series = 1.0*d.sum()/len(d) #支持度序列
column = list(support_series[support_series > support].index) #初步根据支持度筛选
k = 0 while len(column) > 1:
k = k+1
print(u'\n正在进行第%s次搜索...' %k)
column = connect_string(column, ms)
print(u'数目:%s...' %len(column))
sf = lambda i: d[i].prod(axis=1, numeric_only = True) #新一批支持度的计算函数 #创建连接数据,这一步耗时、耗内存最严重。当数据集较大时,可以考虑并行运算优化。
d_2 = pd.DataFrame(list(map(sf,column)), index = [ms.join(i) for i in column]).T support_series_2 = 1.0*d_2[[ms.join(i) for i in column]].sum()/len(d) #计算连接后的支持度
column = list(support_series_2[support_series_2 > support].index) #新一轮支持度筛选
support_series = support_series.append(support_series_2)
column2 = [] for i in column: #遍历可能的推理,如{A,B,C}究竟是A+B-->C还是B+C-->A还是C+A-->B?
i = i.split(ms)
for j in range(len(i)):
column2.append(i[:j]+i[j+1:]+i[j:j+1]) cofidence_series = pd.Series(index=[ms.join(i) for i in column2]) #定义置信度序列 for i in column2: #计算置信度序列
cofidence_series[ms.join(i)] = support_series[ms.join(sorted(i))]/support_series[ms.join(i[:len(i)-1])] for i in cofidence_series[cofidence_series > confidence].index: #置信度筛选
result[i] = 0.0
result[i]['confidence'] = cofidence_series[i]
result[i]['support'] = support_series[ms.join(sorted(i.split(ms)))] result = result.T.sort_values(['confidence','support'], ascending = False) #结果整理,输出
print(u'\n结果为:')
print(result)
return result
from __future__ import print_function
import pandas as pd
from apriori import * #导入自行编写的apriori函数
import time #导入时间库用来计算用时 data = pd.read_csv('data/apriori.txt', header = None, dtype = object) #读取数据 start = time.clock() #计时开始
print(u'\n转换原始数据至0-1矩阵...')
ct = lambda x : pd.Series(1, index = x[pd.notnull(x)]) #转换0-1矩阵的过渡函数
b = map(ct, data.as_matrix()) #用map方式执行
data = pd.DataFrame(list(b)).fillna(0) #实现矩阵转换,空值用0填充
end = time.clock() #计时结束
print(u'\n转换完毕,用时:%0.2f秒' %(end-start))
del b #删除中间变量b,节省内存 support = 0.06 #最小支持度
confidence = 0.75 #最小置信度
ms = '---' #连接符,默认'--',用来区分不同元素,如A--B。需要保证原始表格中不含有该字符 start = time.clock() #计时开始
print(u'\n开始搜索关联规则...')
find_rule(data, support, confidence, ms)
end = time.clock() #计时结束
print(u'\n搜索完成,用时:%0.2f秒' %(end-start))
[Python数据挖掘]第8章、中医证型关联规则挖掘的更多相关文章
- [Python数据挖掘]第4章、数据预处理
数据预处理主要包括数据清洗.数据集成.数据变换和数据规约,处理过程如图所示. 一.数据清洗 1.缺失值处理:删除.插补.不处理 ## 拉格朗日插值代码(使用缺失值前后各5个未缺失的数据建模) impo ...
- [Python数据挖掘]第6章、电力窃漏电用户自动识别
一.背景与挖掘目标 相关背景自查 二.分析方法与过程 1.EDA(探索性数据分析) 1.分布分析 2.周期性分析 2.数据预处理 1.数据清洗 过滤非居民用电数据,过滤节假日用电数据(节假日用电量明显 ...
- [Python数据挖掘]第7章、航空公司客户价值分析
一.背景和挖掘目标 二.分析方法与过程 客户价值识别最常用的是RFM模型(最近消费时间间隔Recency,消费频率Frequency,消费金额Monetary) 1.EDA(探索性数据分析) #对数据 ...
- [Python数据挖掘]第3章、数据探索
1.缺失值处理:删除.插补.不处理 2.离群点分析:简单统计量分析.3σ原则(数据服从正态分布).箱型图(最好用) 离群点(异常值)定义为小于QL-1.5IQR或大于Qu+1.5IQR import ...
- [Python数据挖掘]第2章、Python数据分析简介
<Python数据分析与挖掘实战>的数据和代码,可从“泰迪杯”竞赛网站(http://www.tipdm.org/tj/661.jhtml)下载获得 1.Python数据结构 2.Nump ...
- [Python数据挖掘]第5章、挖掘建模(下)
四.关联规则 Apriori算法代码(被调函数部分没怎么看懂) from __future__ import print_function import pandas as pd #自定义连接函数,用 ...
- [Python数据挖掘]第5章、挖掘建模(上)
一.分类和回归 回归分析研究的范围大致如下: 1.逻辑回归 #逻辑回归 自动建模 import pandas as pd from sklearn.linear_model import Logist ...
- 【机器学习实战】第8章 预测数值型数据:回归(Regression)
第8章 预测数值型数据:回归 <script type="text/javascript" src="http://cdn.mathjax.org/mathjax/ ...
- 进击的Python【第十七章】:jQuery的基本应用
进击的Python[第十七章]:jQuery的基本应用
随机推荐
- spring boot异常积累
1.异常:Error resolving template "xxx", template might not exist or might not be accessible.. ...
- Overview of .rdp file settings
On this page you will find an overview of most of the available .rdp file settings which can be used ...
- NOIP 2017 解题报告
---恢复内容开始--- NOIP 2017 的题真的很难啊,怪不得当年我这个萌新爆零了(当然现在也是萌新)越学越觉得自己什么都不会. 想要成为强者要把这些好题都弄懂弄透 至少现在6道题我都比较陌生 ...
- python遍历文件
#!/usr/local/bin/python # -*- coding: UTF-8 -*- #coding:gbk import re import os rootdir = 'src' def ...
- CSIS 1119B/C Introduction to Data Structures and Algorithms
CSIS 1119B/C Introduction to Data Structures and Algorithms Programming Assignment TwoDue Date: 18 A ...
- Vue2.2版本学习小结
一.项目初始化继续参考这里 https://github.com/vuejs-templates/webpack-simple 或者 https://github.com/vuejs-template ...
- 【UNIX环境高级编程】文件I/O
[UNIX环境高级编程]文件I/O大多数文件I/O只需要5个函数: open.read.write.lseek以及close 不带缓冲的I/O: 每个read和write都调用内核中的一个系统调用 1 ...
- ASP.NET微信支付XXE漏洞修复
1. XXE场景 关于XML解析存在的安全问题指引 微信支付商户,最近暴露的XML外部实体注入漏洞(XML External Entity Injection,简称 XXE),该安全问题是由XML组件 ...
- XLSReadWriteII5导入excel数据
procedure TForm1.Button1Click(Sender: TObject); var xls: TXLSReadWriteII5; openFile: TOpenDialog; Ro ...
- 70个Python练手项目列表(都有完整教程)
前言: 不管学习那门语言都希望能做出实际的东西来,这个实际的东西当然就是项目啦,不用多说大家都知道学编程语言一定要做项目才行. 这里整理了70个Python实战项目列表,都有完整且详细的教程,你可以从 ...