【机器学习】--线性回归中L1正则和L2正则
一、前述
L1正则,L2正则的出现原因是为了推广模型的泛化能力。相当于一个惩罚系数。
二、原理
L1正则:Lasso Regression

L2正则:Ridge Regression

总结:
经验值 MSE前系数为1 ,L1 , L2正则前面系数一般为0.4~0.5 更看重的是准确性。
L2正则会整体的把w变小。
L1正则会倾向于使得w要么取1,要么取0 ,稀疏矩阵 ,可以达到降维的角度。
ElasticNet函数(把L1正则和L2正则联合一起):

总结:
1.默认情况下选用L2正则。
2.如若认为少数特征有用,可以用L1正则。
3.如若认为少数特征有用,但特征数大于样本数,则选择ElasticNet函数。
代码一:L1正则
# L1正则
import numpy as np
from sklearn.linear_model import Lasso
from sklearn.linear_model import SGDRegressor X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100, 1) lasso_reg = Lasso(alpha=0.15)
lasso_reg.fit(X, y)
print(lasso_reg.predict(1.5)) sgd_reg = SGDRegressor(penalty='l1')
sgd_reg.fit(X, y.ravel())
print(sgd_reg.predict(1.5))
代码二:L2正则
# L2正则
import numpy as np
from sklearn.linear_model import Ridge
from sklearn.linear_model import SGDRegressor X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100, 1) #两种方式第一种岭回归
ridge_reg = Ridge(alpha=1, solver='auto')
ridge_reg.fit(X, y)
print(ridge_reg.predict(1.5))#预测1.5的值
#第二种 使用随机梯度下降中L2正则
sgd_reg = SGDRegressor(penalty='l2')
sgd_reg.fit(X, y.ravel())
print(sgd_reg.predict(1.5))
代码三:Elastic_Net函数
# elastic_net函数
import numpy as np
from sklearn.linear_model import ElasticNet
from sklearn.linear_model import SGDRegressor X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100, 1)
#两种方式实现Elastic_net
elastic_net = ElasticNet(alpha=0.1, l1_ratio=0.5)
elastic_net.fit(X, y)
print(elastic_net.predict(1.5)) sgd_reg = SGDRegressor(penalty='elasticnet')
sgd_reg.fit(X, y.ravel())
print(sgd_reg.predict(1.5))
【机器学习】--线性回归中L1正则和L2正则的更多相关文章
- 【机器学习】--鲁棒性调优之L1正则,L2正则
一.前述 鲁棒性调优就是让模型有更好的泛化能力和推广力. 二.具体原理 1.背景 第一个更好,因为当把测试集带入到这个模型里去.如果测试集本来是100,带入的时候变成101,则第二个模型结果偏差很大, ...
- 贝叶斯先验解释l1正则和l2正则区别
这里讨论机器学习中L1正则和L2正则的区别. 在线性回归中我们最终的loss function如下: 那么如果我们为w增加一个高斯先验,假设这个先验分布是协方差为 的零均值高斯先验.我们在进行最大似然 ...
- L1正则和L2正则的比较分析详解
原文链接:https://blog.csdn.net/w5688414/article/details/78046960 范数(norm) 数学上,范数是一个向量空间或矩阵上所有向量的长度和大小的求和 ...
- L1正则与L2正则
L1正则是权值的绝对值之和,重点在于可以稀疏化,使得部分权值等于零. L1正则的含义是 ∥w∥≤c,如下图就可以解释为什么会出现权值为零的情况. L1正则在梯度下降的时候不可以直接求导,可以有以下几种 ...
- L1 正则 和 L2 正则的区别
L1,L2正则都可以看成是 条件限制,即 $\Vert w \Vert \leq c$ $\Vert w \Vert^2 \leq c$ 当w为2维向量时,可以看到,它们限定的取值范围如下图: 所以它 ...
- 大白话5分钟带你走进人工智能-第十四节过拟合解决手段L1和L2正则
第十四节过拟合解决手段L1和L2正则 第十三节中, ...
- 大白话5分钟带你走进人工智能-第十五节L1和L2正则几何解释和Ridge,Lasso,Elastic Net回归
第十五节L1和L2正则几何解释和Ridge,Lasso,Elastic Net回归 上一节中我们讲解了L1和L2正则的概念,知道了L1和L2都会使不重要的维度权重下降得多,重要的维度权重下降得少,引入 ...
- 机器学习中L1,L2正则化项
搞过机器学习的同学都知道,L1正则就是绝对值的方式,而L2正则是平方和的形式.L1能产生稀疏的特征,这对大规模的机器学习灰常灰常重要.但是L1的求解过程,实在是太过蛋疼.所以即使L1能产生稀疏特征,不 ...
- Spark2.0机器学习系列之12: 线性回归及L1、L2正则化区别与稀疏解
概述 线性回归拟合一个因变量与一个自变量之间的线性关系y=f(x). Spark中实现了: (1)普通最小二乘法 (2)岭回归(L2正规化) (3)La ...
随机推荐
- Metaphor of quotient space
In James Munkres "Topology" Section 22, the quotient space is defined as below. Definition ...
- MVC中ztree异步加载
var setting = { async: { enable: true, url: "*****/LoadChild", autoParam: ["id"] ...
- windows7搜索python java go php等其他文件内容
1.添加文件内容搜索配置 2.将需要搜索的文件索引,添加至windows索引 控制面板->索引选项->高级->文件类型 把需要搜索的文件添加一下索引 3.如果不行的话,那么还是在索引 ...
- linux 访问到对应的接口
8080端口已经打开. 8080端口已被监听 telnet 192.168.163.128 8080 成功 也可以将防火墙关闭,这样所有的接口已经开放,不会再被拦截.这种情况下只要8080端口被某 ...
- SpringBoot配置文件
一.配置文件 配置文件应该是无论在哪个框架中都是一个重要角色,而我们最为常用的xxx.xml和xxx.properties,还有springboot推荐使用的xxx.yml. 二.SpringBoot ...
- 勾勾街:一个专业的苹果ios app 自助打包的网站,免越狱,免证书签名
众所周知,苹果的APP开发是需要基于MAC环境的,而我们很多的开发者并没有这样的条件,如果单单为发布一款app就去买一台价格昂贵的MAC那成本就太高了! 就算你有一台MAC,也有能力自己开发出一款基于 ...
- Redis数据库概述
Redis数据库概述 Redis是什么 redis是一个高性能的key-value存储系统.支持的value类型相对更多,包括string,list,set,zset(sorted set --有序集 ...
- Python面向对象编程指南
Python面向对象编程指南(高清版)PDF 百度网盘 链接:https://pan.baidu.com/s/1SbD4gum4yGcUruH9icTPCQ 提取码:fzk5 复制这段内容后打开百度网 ...
- 微信跳转ticket值怎么得到?浏览器跳到微信?哪里有微信跳转接口?跳转功能能用多久?
目前很多实用微信跳转技术的电商朋友,网站文章头部或者文章中部出现了点击关注微信关注的二维码,用户点击进去直接跳转到微信内打开指定的二维码,识别即可关注,方便省事,比以往的一键复制—粘贴微信号,转化效果 ...
- codeforces 13 b
给你三根线段判段是否组成了A 条件,两条线段交于端点并且夹角不大于90,第三条线段端点在两条线段上并且划分的大小满足 大:小<4:1 注释很全.(主要是我记不清楚了,,好像过了一个多星期了) # ...