1.  在流体存在粘性、热传导及 $\sigma\neq \infty$ 时, 磁流体力学方程组是一个拟线性对称双曲 - 抛物耦合组.

2.  在流体存在粘性、热传导但 $\sigma=\infty$ 时, 磁流体力学方程组是一个拟线性对称双曲 - 抛物耦合组.

3.  如果流体没有任何耗散过程, 此时称为理想磁流体, 而其方程称为理想磁流体力学方程组, 它是一个具有守恒律形式的一阶拟线性对称双曲组.

[物理学与PDEs]第3章第4节 磁流体力学方程组的数学结构的更多相关文章

  1. [物理学与PDEs]第3章第2节 磁流体力学方程组 2.4 不可压情形的磁流体力学方程组

    不可压情形的磁流体力学方程组 $$\beex \bea \cfrac{\rd {\bf H}}{\rd t}-({\bf H}\cdot\n){\bf u}&=\cfrac{1}{\sigma ...

  2. [物理学与PDEs]第3章第2节 磁流体力学方程组 2.3 磁流体力学方程组

    1.  磁流体力学方程组 $$\beex \bea \cfrac{\p {\bf H}}{\p t} &-\rot({\bf u}\times{\bf H})=\cfrac{1}{\sigma ...

  3. [物理学与PDEs]第3章第2节 磁流体力学方程组 2.2 考虑到电磁场的存在对流体力学方程组的修正

    1.  连续性方程 $$\bex \cfrac{\p \rho}{\p t}+\Div(\rho{\bf u})=0.  \eex$$ 2.  动量守恒方程 $$\bex \cfrac{\p }{\p ...

  4. [物理学与PDEs]第3章第2节 磁流体力学方程组 2.1 考虑到导电媒质 (等离子体) 的运动对 Maxwell 方程组的修正

    1.  Maxwell 方程组 $$\bee\label{3_2_1_Maxwell} \bea \Div{\bf D}&=\rho_f,\\ \rot{\bf E}&=-\cfrac ...

  5. [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构

    5.5.1 线性弹性动力学方程组   1.  线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...

  6. [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题

    5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1.  线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...

  7. [物理学与PDEs]第4章第2节 反应流体力学方程组 2.4 反应流体力学方程组的数学结构

    1.  粘性热传导反应流体力学方程组是拟线性对称双曲 - 抛物耦合组. 2.  理想反应流体力学方程组是一阶拟线性对称双曲组 (取 ${\bf u},p,S,Z$ 为未知函数). 3.  右端项具有间 ...

  8. [物理学与PDEs]第4章第2节 反应流体力学方程组 2.3 混合气体状态方程

    1.  记号与假设 (1)  已燃气体的化学能为 $0$. (2)  单位质量的未燃气体的化学能为 $g_0>0$. 2.  对多方气体 (理想气体当 $T$ 不高时可近似认为), $$\bex ...

  9. [物理学与PDEs]第4章第2节 反应流体力学方程组 2.2 反应流体力学方程组形式的化约

    1.  粘性热传导反应流体力学方程组 $$\beex \bea \cfrac{\rd \rho}{\rd t}&+\rho \Div{\bf u}=0,\\ \cfrac{\rd Z}{\rd ...

随机推荐

  1. 【Python 14】分形树绘制2.0(重复五角星+Turtle库文档)

    1.案例描述 加入循环操作绘制重复不同大小的图形 2.案例分析 3.turtle库补充 # 画笔控制函数 turtle.penup() # 抬起画笔,之后移动画笔不绘制图形 turtle.pendow ...

  2. 明天研究下jpa直接像django一样生成

    https://blog.csdn.net/yztezhl/article/details/79390714 自动生成 教程-- https://blog.csdn.net/mxjesse/artic ...

  3. JavaScript代码组织结构良好的5个特点

    JavaScript代码组织结构良好的5个特点,随着JavaScript项目的成长,如果你不小心处理的话,他们往往会变得难以管理.我们发现自己常常陷入的一些问题: 当在创建新的页面时发现,很难重用或测 ...

  4. 洛谷 P1439 【模板】最长公共子序列

    \[传送门啦\] 题目描述 给出\(1-n\)的两个排列\(P1\)和\(P2\),求它们的最长公共子序列. 输入输出格式 输入格式: 第一行是一个数\(n\), 接下来两行,每行为\(n\)个数,为 ...

  5. 越狱解决iphone4s外放无声音

    删除iphone中/System/Library/PrivateFrameworks/IAP.framework/Support/目录下的iapd文件 进入/SYSTEM/Library/Launch ...

  6. 09-JavaScript之伪数组arguments

    JavaScript之伪数组arguments arguments代表的是实参.有个讲究的地方是:arguments只在函数中使用. 1.返回函数实参的个数 使用argument.length方法返回 ...

  7. SQL中ON和WHERE的区别

    SQL中ON和WHERE的区别 - 邃蓝星空 - 博客园 https://www.cnblogs.com/guanshan/articles/guan062.html

  8. SpringBoot使用Filter过滤器处理是否登录的过滤时,用response.sendRedirect()转发报错

    1.使用response.sendRedirect("/login")时报错,控制台报错如下: Cannot call sendError() after the response ...

  9. Electron桌面应用打包流程

    一. 准备工作 1.npm的安装需要下载node.js,安装完node.js之后npm自然会有. 参考链接:http://www.runoob.com/nodejs/nodejs-install-se ...

  10. Vue-router的三种传参方式

    第一种传递参数:name传参 两步完成name传参并显示在模板中: 第一在router/index.js中配置name属性, routes: [ { path: '/', name: 'HelloWo ...