一、Mapreduce概述

  Mapreduce是分布式程序编程框架,也是分布式计算框架,它简化了开发!

  Mapreduce将用户编写的业务逻辑代码和自带默认组合整合成一个完整的分布式运算程序,并发的运行在hadoop集群上。

二、Mapreduce优缺点

  优点:1.易于编程:只用实现几个接口即可完成一个并发的程序。

     2.良好的拓展性:再不行当前程序运行的情况下,可以通过增加节点来解决用户/数据扩展,计算量增加的问题。

     3.高容错性:可以运行在廉价的集群机器上。

     4.适合处理PB级别以上的离线处理。

  缺点:1.不擅长做实时计算、流式计算。

     2.不支持DAG(有向图)计算,有依赖的程序(spark支持)。

     3.每次把计算结果写入磁盘当中,造成磁盘io,性能较低。

三、Mapreduce编程思想

  需求:统计一个200M的单词文件,查询出每个单词出现的次数。

  思想:1.将200M的文件切分为两块,128M和72M;

     2.将两块文件分别交给两个maptask处理,对数据进行读取,切分,封装,然后传输到reducetask;

     3.reducetask将数据再次整合,累加,输出到结果文件中。

  注意:mapreduce中的所有maptask都是并行运行的,reducetask也是,

    但是reducetask的运行要依赖maptask的输出。

四、WordCount程序

/**
* @author: PrincessHug
* @date: 2019/3/24, 0:52
* @Blog: https://www.cnblogs.com/HelloBigTable/
*/
public class WordCountMapper extends Mapper<LongWritable, Text,Text, IntWritable> {
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
//读取数据
String line = value.toString(); //切分数据
String[] fields = line.split(" "); //传输数据
for (String f:fields){
context.write(new Text(f),new IntWritable(1));
}
}
} public class WordCountReducer extends Reducer<Text, IntWritable,Text,IntWritable> {
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
//累加
int sum = 0;
for (IntWritable i:values){
sum += i.get();
}
//输出
context.write(key,new IntWritable(sum));
}
} public class WordCountDriver {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
//配置,job对象
Configuration conf = new Configuration();
Job job = Job.getInstance(); //设置运行类
job.setJarByClass(WordCountDriver.class); //设置Mapper,Reducer类
job.setMapperClass(WordCountMapper.class);
job.setReducerClass(WordCountReducer.class); //设置Mapper输出数据类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class); //设置Reducer输出数据类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class); //设置输入输出流
FileInputFormat.setInputPaths(job,new Path("G:\\mapreduce\\wordcount\\in"));
FileOutputFormat.setOutputPath(job,new Path("G:\\mapreduce\\wordcount\\out")); //提交任务
if (job.waitForCompletion(true)){
System.out.println("运行完成!");
}else {
System.out.println("运行失败!");
} } }

  

Mapreduce概述和WordCount程序的更多相关文章

  1. 021_在Eclipse Indigo中安装插件hadoop-eclipse-plugin-1.2.1.jar,直接运行wordcount程序

    1.工具介绍 Eclipse Idigo.JDK1.7-32bit.hadoop1.2.1.hadoop-eclipse-plugin-1.2.1.jar(自己网上下载) 2.插件安装步骤 1)将ha ...

  2. 020_自己编写的wordcount程序在hadoop上面运行,不使用插件hadoop-eclipse-plugin-1.2.1.jar

    1.Eclipse中无插件运行MP程序 1)在Eclipse中编写MapReduce程序 2)打包成jar包 3)使用FTP工具,上传jar到hadoop 集群环境 4)运行 2.具体步骤 说明:该程 ...

  3. hadoop2.7.x运行wordcount程序卡住在INFO mapreduce.Job: Running job:job _1469603958907_0002

    一.抛出问题 Hadoop集群(全分布式)配置好后,运行wordcount程序测试,发现每次运行都会卡住在Running job处,然后程序就呈现出卡死的状态. wordcount运行命令:[hado ...

  4. Yarn集群的搭建、Yarn的架构和WordCount程序在集群提交方式

    一.Yarn集群概述及搭建 1.Mapreduce程序运行在多台机器的集群上,而且在运行是要使用很多maptask和reducertask,这个过程中需要一个自动化任务调度平台来调度任务,分配资源,这 ...

  5. Hadoop入门实践之从WordCount程序说起

    这段时间需要学习Hadoop了,以前一直听说Hadoop,但是从来没有研究过,这几天粗略看完了<Hadoop实战>这本书,对Hadoop编程有了大致的了解.接下来就是多看多写了.以Hado ...

  6. MapReduce概述,原理,执行过程

    MapReduce概述 MapReduce是一种分布式计算模型,运行时不会在一台机器上运行.hadoop是分布式的,它是运行在很多的TaskTracker之上的. 在我们的TaskTracker上面跑 ...

  7. Hadoop(十二)MapReduce概述

    前言 前面以前把关于HDFS集群的所有知识给讲解完了,接下来给大家分享的是MapReduce这个Hadoop的并行计算框架. 一.背景 1)爆炸性增长的Web规模数据量 2)超大的计算量/计算复杂度 ...

  8. Hadoop下WordCount程序

    一.前言 在之前我们已经在 CenOS6.5 下搭建好了 Hadoop2.x 的开发环境.既然环境已经搭建好了,那么现在我们就应该来干点正事嘛!比如来一个Hadoop世界的HelloWorld,也就是 ...

  9. Hadoop集群测试wordcount程序

    一.集群环境搭好了,我们来测试一下吧 1.在java下创建一个wordcount文件夹:mkdir wordcount 2.在此文件夹下创建两个文件,比如file1.txt和file2.txt 在fi ...

随机推荐

  1. Django ORM 操作2 增删改

    增删改 增加 表对象直接增加方式 Frank_obj = models.Student(name ="海东",course="python",birth=&qu ...

  2. git 操作命令详解

    git 什么是git 开源的分布式版本控制系统, 用于高效的管理大小项目和文件 代码管理工具 防止代码丢失, 做备份 代码版本管控, 设置节点, 多版本切换 建立分支各自开发, 互不影响, 方便合并 ...

  3. shell之数组和关联数组

    数组和关联数组 #!/bin/bash #定义数组1 array_var1=(1 2 3 4 5 6)# #定义数组2 array_var[0]="test1" array_var ...

  4. dajngo cache,throttling

    缓存 背景介绍: 动态网站的问题就在于它是动态的. 也就是说每次用户访问一个页面,服务器要执行数据库查询,启动模板,执行业务逻辑以及最终生成一个你所看到的网页,这一切都是动态即时生成的. 从处理器资源 ...

  5. U66785 行列式求值

    二更:把更多的行列式有关内容加了进来(%%%%%Jelly Goat奆佬) 题目描述 给你一个N(n≤10n\leq 10n≤10)阶行列式,请计算出它的值 输入输出格式 输入格式: 第一行有一个整数 ...

  6. request对象的方法及其参数的传递

    先设计一个简单的登录界面index.htm: <html><head><title>request的使用</title></head>< ...

  7. 解决每次从cmd进入sqlplus,都得重新设置pagesize、linesize的问题

    https://blog.csdn.net/u012127798/article/details/34146143/ Oracle里的set零零碎碎的,这里整理归纳一下 SQL> set tim ...

  8. Kubernetes之Pod 控制器

    定义Pod的常用资源 pods.spec.containers - name    <string>   #containers 的名字 image    <string>  ...

  9. ArrayList的实现及原理

    ArrayList ArrayList是最常见以及每个Java开发者最熟悉的集合类了,顾名思义,ArrayList就是一个以数组形式实现的集合,以一张表格来看一下ArrayList里面有哪些基本的元素 ...

  10. MapReduce 概述

    定义 Hadoop MapReduce 是一个分布式运算程序的编程框架,用于轻松编写分布式应用程序,以可靠,容错的方式在大型集群(数千个节点)上并行处理大量数据(TB级别),是用户开发 “基于 Had ...