Ignatius and the Princess II

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 4865    Accepted Submission(s): 2929
Problem Description
Now our hero finds the door to the BEelzebub feng5166. He opens the door and finds feng5166 is about to kill our pretty Princess. But now the BEelzebub has to beat our hero first. feng5166 says, "I have three question for you, if
you can work them out, I will release the Princess, or you will be my dinner, too." Ignatius says confidently, "OK, at last, I will save the Princess."



"Now I will show you the first problem." feng5166 says, "Given a sequence of number 1 to N, we define that 1,2,3...N-1,N is the smallest sequence among all the sequence which can be composed with number 1 to N(each number can be and should be use only once
in this problem). So it's easy to see the second smallest sequence is 1,2,3...N,N-1. Now I will give you two numbers, N and M. You should tell me the Mth smallest sequence which is composed with number 1 to N. It's easy, isn't is? Hahahahaha......"

Can you help Ignatius to solve this problem?
 
Input
The input contains several test cases. Each test case consists of two numbers, N and M(1<=N<=1000, 1<=M<=10000). You may assume that there is always a sequence satisfied the BEelzebub's demand. The input is terminated by the end of
file.
 
Output
For each test case, you only have to output the sequence satisfied the BEelzebub's demand. When output a sequence, you should print a space between two numbers, but do not output any spaces after the last number.
 
Sample Input
6 4
11 8
 
Sample Output
1 2 3 5 6 4
1 2 3 4 5 6 7 9 8 11 10
 

注意:由于1000的阶乘太大,并且M小于等于10000,所以我们仅仅须要算到阶乘大于10000的为就能够了,也就是8。。之后推断是不是第八位的特殊推断就可以。

代码:

#include <stdio.h>
#include <string.h>
int a[9] = {1, 1, 2, 6, 24, 120, 720, 5040, 40320};
int vis[1005];
int main(){
int n, m;
while(scanf("%d%d", &n, &m) == 2){
memset(vis, 0, sizeof(vis));
m -= 1;
int cou, temp = 1;
while(temp < n){
if((n - temp) <= 8){
int s = m/a[n-temp];
int p = m%a[n-temp];
int c = 0;
for(int i = 1; i <= n; i ++){
if(!vis[i]) ++c;
if((c-1) == s){
printf("%d ", i);
vis[i] = 1; break;
}
}
m = p;
}
else{
for(int i = 1; i <= n; i ++){
if(!vis[i]) {
vis[i] = 1;
printf("%d ", i); break;
}
}
}
++temp;
}
for(int i = 1; i <= n; i ++){
if(!vis[i]) printf("%d\n", i);
}
}
return 0;
}

hdoj 1027 Ignatius and the Princess II 【逆康托展开】的更多相关文章

  1. HDU 1027 Ignatius and the Princess II(康托逆展开)

    Ignatius and the Princess II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ( ...

  2. HDU 1027 Ignatius and the Princess II(求第m个全排列)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1027 Ignatius and the Princess II Time Limit: 2000/10 ...

  3. HDU - 1027 Ignatius and the Princess II 全排列

    Ignatius and the Princess II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ( ...

  4. HDU 1027 Ignatius and the Princess II[DFS/全排列函数next_permutation]

    Ignatius and the Princess II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ( ...

  5. poj 1027 Ignatius and the Princess II全排列

    Ignatius and the Princess II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ( ...

  6. hdu 1027 Ignatius and the Princess II(正、逆康托)

    题意: 给N和M. 输出1,2,...,N的第M大全排列. 思路: 将M逆康托,求出a1,a2,...aN. 看代码. 代码: int const MAXM=10000; int fac[15]; i ...

  7. 【HDOJ】1027 Ignatius and the Princess II

    这道题目最开始完全不懂,后来百度了一下,原来是字典序.而且还是组合数学里的东西.看字典序的算法看了半天才搞清楚,自己仔细想了想,确实也是那么回事儿.对于长度为n的数组a,算法如下:(1)从右向左扫描, ...

  8. HDU 1027 Ignatius and the Princess II 选择序列题解

    直接选择序列的方法解本题,可是最坏时间效率是O(n*n),故此不能达到0MS. 使用删除优化,那么就能够达到0MS了. 删除优化就是当须要删除数组中的元素为第一个元素的时候,那么就直接移动数组的头指针 ...

  9. HDU 1027 - Ignatius and the Princess II

    第 m 大的 n 个数全排列 DFS可过 #include <iostream> using namespace std; int n,m; ]; bool flag; ]; void d ...

随机推荐

  1. Hibernate(十五)注解

    一.Hibernate注解 使用注解的方式来注释类和属性,从而完成对象和关系的映射 二.步骤 三.注解标签 四.查询

  2. 从零开始学JavaScript二(基本概念)

    基本概念 一.区分大小写 在ECMAScript中的一切(变量.函数名.操作符)都是区分大小写的. 如变量名test和Test分别表示两个不同的变量, 二.标识符 所谓标识符,就是指变量.函数.属性的 ...

  3. SpringMVC通过邮件找回密码功能的实现

    1.最近开发一个系统,有个需求就是,忘记密码后通过邮箱找回.现在的系统在注册的时候都会强制输入邮箱,其一目的就是 通过邮件绑定找回,可以进行密码找回.通过java发送邮件的功能我就不说了,重点讲找回密 ...

  4. linux远程

    apt-get install rdesktop $rdesktop -u administrator -p ****** -a 16 192.168.1.1 //都直接登陆了,

  5. 解决运行Maven是报错:No goals have been specified for this build

    pom.xml文件<build>标签后面加上<defaultGoal>compile</defaultGoal>即可

  6. git工具 将源码clone到本地指定目录的三种方式

      git工具 将源码clone到本地指定目录的三种方式 CreationTime--2018年7月27日15点34分 Author:Marydon 1.情景展示 运行git-bash.exe,输入命 ...

  7. eclipse 修改maven项目的jdk版本

      eclipse 修改maven项目的jdk版本 CreationTime--2018年6月8日10点29分 Author:Marydon 1.情景展示 jdk版本太低,如何修改 2.错误方式 第一 ...

  8. 前端工程精粹(一):静态资源版本更新与缓存(附精简js的工具)

    转自:http://www.infoq.com/cn/articles/front-end-engineering-and-performance-optimization-part1/ 每个参与过开 ...

  9. GPT磁盘win7激活工具

    系统重装前是Win10,再次重装没有格式化磁盘.GPT分区模式安装的Win7,传统的Win7激活工具都是基于KMS的. 今天,GPT磁盘win7激活工具针对GPTwin7de激活! 01.未激活 02 ...

  10. nodejs实现拉钩网爬虫

    概述 通过nodejs+mysql+cheerio+request实现拉钩网特定公司的所有招聘信息的抓取,并将抓取的信息保存到数据库中.抓取内容包括:薪酬福利,工作地,职位要求,工作性质等几乎所有的内 ...