唯一路径问题II

Unique Paths II

Follow up for "Unique Paths":

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

For example,

There is one obstacle in the middle of a 3x3 grid as illustrated below.

[
[0,0,0],
[0,1,0],
[0,0,0]
]

The total number of unique paths is 2.

Note: m and n will be at most 100.

--

第一种方法(uniquePathsWithObstacles)为递归实现

  会超时,最后一个case有16亿+条路径...递归方法会走每条路径,所以一定会超时。

第二种方法(uniquePathsWithObstaclesDP)为动态规划

  不难发现max_ways[x,y]=max_ways[x-1,y]+max_ways[x,y-1], 即满足最优子结构性质。

  并且max_ways[x-1,y]和max_ways[x,y-1]依赖于max_ways[m,n](0<m<x, 0<n<y),即满足子问题重叠性质,因此使用动态规划可以获得更好的效率

 
 
'''
Created on Nov 25, 2014 @author: ScottGu<gu.kai.66@gmail.com, 150316990@qq.com>
'''
class Solution:
def __init__(self):
self.ways=0
self.max_x=0
self.max_y=0 # @param obstacleGrid, a list of lists of integers
# @return an integer
def uniquePathsWithObstacles(self, obstacleGrid):
if(obstacleGrid==None):return 0
if(len(obstacleGrid)==0):return 0
if(obstacleGrid[0][0] ==1): return 0 self.__init__()
self.max_x=len(obstacleGrid[0])-1
self.max_y=len(obstacleGrid)-1
self.find_ways(0,0, obstacleGrid)
return self.ways def find_ways(self, x, y, grid):
if(x==self.max_x and y==self.max_y):
self.ways=self.ways+1 if(x<self.max_x and grid[y][x+1]!=1):
self.find_ways(x+1, y, grid)
if(y<self.max_y and grid[y+1][x]!=1):
self.find_ways(x, y+1, grid) # @obstacleGrid is a grid of m*n cells
def uniquePathsWithObstaclesDP(self, obstacleGrid):
m = len(obstacleGrid)
if(m ==0): return 0
n = len(obstacleGrid[0])
if(obstacleGrid[0][0] ==1): return 0 max_ways={}
for x in range(n):max_ways[x]=0 max_ways[0]=1;
for y in range(m):
for x in range(n):
if(obstacleGrid[y][x] ==1):
max_ways[x]=0
else:
if(x >0):
max_ways[x] = max_ways[x-1]+max_ways[x]
return max_ways[n-1]; if __name__ == '__main__':
sl=Solution()
grid=[[0,0,0],
[0,1,0],
[0,0,0]]
print sl.uniquePathsWithObstacles(grid)
grid=[[0,0,0,0,0],
[0,1,0,0,0],
[0,1,0,0,0],
[0,1,0,0,0],
[0,0,0,0,0]]
print sl.uniquePathsWithObstacles(grid)
grid= [
[0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,1,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0],
[0,1,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0],
[0,1,0,0,0,0,0,0,0,0]
] print sl.uniquePathsWithObstacles(grid)
grid= [
[0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0] ,
[0,0,0,0,0,0,0,0,0,0] ,
[0,0,0,0,0,0,0,0,0,0] ,
[0,0,0,0,0,0,0,0,0,0]
] print sl.uniquePathsWithObstacles(grid)
grid=[
[0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1],
[0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0],
[1,1,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,0,0,0,0,0,1,0,0,1],
[0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0],
[0,0,0,1,0,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,0],
[1,0,1,1,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0],
[0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,1,0,0,0,1,0,1,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,0],
[0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,0,0,0,0],
[0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0],
[1,0,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,1,0,1,0,0,0,1,0,1,0,0,0,0,1],
[0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0],
[0,1,0,1,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0],
[0,1,0,0,0,0,0,0,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,1],
[1,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,1,1,0,0,1,0,0,0,0,0,0],
[0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,0,0,1,1,0,1,0,0,0,0,1,1],
[0,1,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,1,0,1],
[1,1,1,0,1,0,0,0,0,1,0,0,0,0,0,0,1,0,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1],
[0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0,1,0,0,0]
]
print sl.uniquePathsWithObstaclesDP(grid)

LEETCODE —— Unique Paths II [Dynamic Programming]的更多相关文章

  1. LEETCODE —— Unique Paths II [动态规划 Dynamic Programming]

    唯一路径问题II Unique Paths II Follow up for "Unique Paths": Now consider if some obstacles are ...

  2. LeetCode: Unique Paths II 解题报告

    Unique Paths II Total Accepted: 31019 Total Submissions: 110866My Submissions Question Solution  Fol ...

  3. [LeetCode] Unique Paths II 不同的路径之二

    Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...

  4. [leetcode]Unique Paths II @ Python

    原题地址:https://oj.leetcode.com/problems/unique-paths-ii/ 题意: Follow up for "Unique Paths": N ...

  5. Leetcode Unique Paths II

    Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...

  6. [Leetcode] unique paths ii 独特路径

    Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...

  7. [LeetCode] Unique Paths && Unique Paths II && Minimum Path Sum (动态规划之 Matrix DP )

    Unique Paths https://oj.leetcode.com/problems/unique-paths/ A robot is located at the top-left corne ...

  8. 动态规划小结 - 二维动态规划 - 时间复杂度 O(n*n)的棋盘型,题 [LeetCode] Minimum Path Sum,Unique Paths II,Edit Distance

    引言 二维动态规划中最常见的是棋盘型二维动态规划. 即 func(i, j) 往往只和 func(i-1, j-1), func(i-1, j) 以及 func(i, j-1) 有关 这种情况下,时间 ...

  9. [Leetcode Week12]Unique Paths II

    Unique Paths II 题解 原创文章,拒绝转载 题目来源:https://leetcode.com/problems/unique-paths-ii/description/ Descrip ...

随机推荐

  1. ZOJ 4103 浙江省第16届大学生程序设计竞赛 D题 Traveler 构造

    这个题,正赛的时候也没有过,不过其实已经有了正确的解法,可惜时间不多了,就没有去尝试. 题意是有n个点,i点能通向i-1,然后i和i*2.i*2+1互通. 请你构造一种路径从1能走完所有点,并且不重复 ...

  2. 集合之ArrayList

    一.ArrayList概述 ArrayList是实现List接口的动态数组,所谓动态就是它的大小是可变的.实现了所有可选列表操作,并允许包括 null 在内的所有元素.除了实现 List 接口外,此类 ...

  3. C#中控件Control的Paint事件和OnPaint虚函数的区别

    句柄 : 句柄,是整个Windows编程的基础.一个句柄是指使用的一个唯一的整数值,即一个4字节(64位程序中为8字节)长的数值,来标识应用程序中的不同对象和同类对象中的不同的实例,诸如,一个窗口,按 ...

  4. [转]打造自己的LINQ Provider(上):Expression Tree揭秘

    概述 在.NET Framework 3.5中提供了LINQ 支持后,LINQ就以其强大而优雅的编程方式赢得了开发人员的喜爱,而各种LINQ Provider更是满天飞,如LINQ to NHiber ...

  5. [NOIp2016]蚯蚓 (队列)

    #\(\color{red}{\mathcal{Description}}\) LInk 这道题是个\(zz\)题 #\(\color{red}{\mathcal{Solution}}\) 我们考虑如 ...

  6. K2 BPM介绍(1)

    K2 BPM介绍(1) 官网访问地址: 中文官网 英文官网 它是一个强大的BPM产品 K2 BPM详解 产品特性 与任何内容集成 Integrate with Anything 功能丰富的窗体 Fea ...

  7. [iOS] Edit / Memo 原生控件才提供拼字检查

    在 iOS 平台提供了英文拼字检查,但需将 ControlType 设定为 Platform 才能使用: 效果:

  8. pyhon 列表的增删改查

    li = ['alex', 'wusir', 'egon', '女神', 'taibai'] l1 = li[2] print(l1) #增加 append() 增加到最后 insert(index, ...

  9. Linux下开发python django程序(Cookie读写)

    1.设置cookie信息(登陆成功后设置登陆用户名,有效期1小时) def login(req): if req.method == 'POST': loginform = LoginForm(req ...

  10. django学习笔记(3)

    Part 3: Views and templates ====> Write your first view$ edit polls\views.py from django.http imp ...