1. 计算前n个整数的和

def sumOfN(n):
theSum = 0
for i in range(1,n+1):
theSum += i
return theSum
print(sumOfN(10))

解法一

def sumOfN(n):
return (n*(n+1))/2
print(sumOfN(10))

解法二

2. 乱序字符串检查

乱序字符串是指一个字符串只是另一个字符串的重新排列。
例如,'heart' 和 'earth' 就是乱序字符串。'python' 和 'typhon' 也是。
为了简单起见,我们假设所讨论的两个字符串具有相等的长度,并且他们由 26 个小写字母集合组成。
我们的目标是写一个布尔函数,它将两个字符串做参数并返回它们是不是乱序。
def anagramSolution1(s1,s2):
alist = list(s2)
pos1 = 0
stillok = True
while pos1 < len(s1) and stillok:
pos2 = 0
found = False
while pos2 < len(alist) and not found:
if s1[pos1] == alist[pos2]:
found = True
else:
pos2 += 1
if found:
alist[pos2] = None
else:
stillok = False
pos1 += 1
return stillok print(anagramSolution1('abcd', 'dcba'))

解法一:检查

即使 s1,s2 不同,它们都是由完全相同的字符组成的。
所以,我们按照字母顺序从 a 到 z 排列每个字符串,如果两个字符串相同,那这两个字符串就是乱序字符串。 def anagramSolution1(s1,s2):
alist1 = list(s1)
alist2 = list(s2) alist1.sort()
alist2.sort() pos = 0
matches = True while pos < len(s1) and matches:
if alist1[pos] == alist2[pos]:
pos += 1
else:
matches = False
return matches print(anagramSolution1('abcde', 'edcba'))

解法二:排序和比较

首先你可能认为这个算法是 O(n),因为只有一个简单的迭代来比较排序后的 n 个字符。
但是,调用 Python 排序不是没有成本。正如我们将在后面的章节中看到的,排序通常是O(n^2) 或 O(nlogn)。
所以排序操作比迭代花费更多。最后该算法跟排序过程有同样的量级。

算法分析

利用两个乱序字符串具有相同数目的 a, b, c 等字符的事实。
我们首先计算的是每个字母出现的次数。
由于有 26 个可能的字符,我们就用 一个长度为 26 的列表,每个可能的字符占一个位置。
每次看到一个特定的字符,就增加该位置的计数器。
最后如果两个列表的计数器一样,则字符串为乱序字符串。 def anagramSolution1(s1,s2):
c1 = [0]*26
c2 = [0]*26 for i in range(len(s1)):
pos = ord(s1[i]) - ord('a') # ord 函数:返回对应的 ASCII 数值
c1[pos] += 1
for i in range(len(s2)):
pos = ord(s2[i]) - ord('a') # ord 函数:返回对应的 ASCII 数值
c2[pos] += 1
j = 0
stillok = True
while j < 26 and stillok:
if c1[j] == c2[j]:
j += 1
else:
stillok = False
return stillok print(anagramSolution1('apple', 'pleap'))

解法三:计数和比较

同样,这个方案有多个迭代,但是和第一个解法不一样,它不是嵌套的。
两个迭代都是 n, 第三个迭代,比较两个计数列表,需要 26 步,因为有 26 个字母。
一共T(n)=2n+26T(n)=2n+26,即 O(n),我们找到了一个线性量级的算法解决这个问题。

算法分析

3. 生成一个从0开始的n个数字的列表

def test1():
l = []
for i in range(1000):
l = l + [i]

test1

def test2():
l = []
for i in range(1000):
l.append(i)

test2

def test3():
l = [i for i in range(1000)]

test3

def test4():
l = list(range(1000))

test4

列表操作的效率

操作 O()值
index[] O(1)
append O(1)
pop() O(1)
pop(i) O(n)
insert(i,item) O(n)
del operator O(n)
iteration O(n)
contains(in) O(n)
get slice[x:y] O(k)
del slice O(n)
set slice O(n+k)

reverse

O(n)
concatenate O(k)
sort O(n*logn)
multiply O(n*k)

字典操作的效率

操作 O()值
copy O(n)
get item O(1)
set item O(1)
delete item O(1)
contains(in) O(1)
iteration O(n)

时间复杂性:https://wiki.python.org/moin/TimeComplexity

总结:

1. 算法分析是一种独立的测量算法的方法

2. 大O表示法允许根据问题的大小,通过其主要部分来对算法进行分类

problem-solving-with-algorithms-and-data-structure-usingpython(使用python解决算法和数据结构) -- 算法分析的更多相关文章

  1. 学习笔记之Problem Solving with Algorithms and Data Structures using Python

    Problem Solving with Algorithms and Data Structures using Python — Problem Solving with Algorithms a ...

  2. [Algorithms] Tree Data Structure in JavaScript

    In a tree, nodes have a single parent node and may have many children nodes. They never have more th ...

  3. CDOJ 483 Data Structure Problem DFS

    Data Structure Problem Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.uestc.edu.cn/#/proble ...

  4. [LeetCode] Add and Search Word - Data structure design 添加和查找单词-数据结构设计

    Design a data structure that supports the following two operations: void addWord(word) bool search(w ...

  5. hdu-5929 Basic Data Structure(双端队列+模拟)

    题目链接: Basic Data Structure Time Limit: 7000/3500 MS (Java/Others)    Memory Limit: 65536/65536 K (Ja ...

  6. HDU 5929 Basic Data Structure 模拟

    Basic Data Structure Time Limit: 7000/3500 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Oth ...

  7. hdu 4217 Data Structure? 树状数组求第K小

    Data Structure? Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

  8. (*medium)LeetCode 211.Add and Search Word - Data structure design

    Design a data structure that supports the following two operations: void addWord(word) bool search(w ...

  9. Add and Search Word - Data structure design

    https://leetcode.com/problems/add-and-search-word-data-structure-design/ Design a data structure tha ...

  10. 211. Add and Search Word - Data structure design

    题目: Design a data structure that supports the following two operations: void addWord(word) bool sear ...

随机推荐

  1. Java对象的大小及应用类型

    基础类型数据的大小是固定的,对于非基本类型的java对象,其大小就值得商榷了.      在java中一个空Object对象的大小是8byte,这个大小只是保存堆中没有任何属性的对象的大小,看下面的语 ...

  2. 在.net core Mvc中使用Options和IOptionsSnapshot

    1.Startup.cs 下代码 using System; using System.Collections.Generic; using System.Linq; using System.Thr ...

  3. struts2中s:select标签的使用

    1.第一个例子: <s:select list="{'aa','bb','cc'}" theme="simple" headerKey="00& ...

  4. iOS-AFNetworking参数和多文件同时上传【多文件上传】

    1. 前言 在项目开发中,我们经常需要上传文件,例如:上传图片,上传各种文件,而有时也需要将参数和多个文件一起上传,不知道大家的项目中遇到了没有,我在最近的项目中,就需要这样的一个功能:同时上传参数. ...

  5. C++ 实现Biginteger

    网上C++版Biginteger参差不齐,一下子没有找到一个令人满意Biginteger,最近用c++改写了一下C#版 BigInteger,可以用于RSA大素数的生成,分享给大家.也请大家批评指正改 ...

  6. Python 日期和时间的几种输出格式

    在python中,我们可以使用 time 模块的 strftime 方法来格式化日期,例子如下: import time # 格式化成2016-03-20 11:45:39形式 print (time ...

  7. EF基础知识小记三(设计器=>数据库)

    本文主要介绍通过EF的设计器来同步数据库和对应的实体类.并使用生成的实体上下文,来进行简单的增删查该操作 1.通过EF设计器创建一个简单模型 (1).右键目标项目添加新建项 (2).选择ADO.Net ...

  8. Vue-router的基本使用

    Vue-router的基本使用 相关Html: <!DOCTYPE html> <html lang="en"> <head> <meta ...

  9. 第5章—构建Spring Web应用程序—SpringMVC详解

    SpringMVC详解 5.1.跟踪Springmvc的请求 SpringMVC的核心流程如下: 具体步骤: 第一步:发起请求到前端控制器(DispatcherServlet) 第二步:前端控制器请求 ...

  10. 【数组】kSum问题

    一.2Sum 思路1: 首先对数组排序.不过由于最后返回两个数字的索引,所以需要事先对数据进行备份.然后采用2个指针l和r,分别从左端和右端向中间运动:当l和r位置的两个数字之和小于目标数字targe ...