sketch 相关论文
sketch 相关论文
- Sketch Simplification
We present a novel technique to simplify sketch drawings based on learning a series of convolution operators. In contrast to existing approaches that require vector images as input, we allow the more general and challenging input of rough raster sketches such as those obtained from scanning pencil sketches. We convert the rough sketch into a simplified version which is then amendable for vectorization. This is all done in a fully automatic way without user intervention. Our model consists of a fully convolutional neural network which, unlike most existing convolutional neural networks, is able to process images of any dimensions and aspect ratio as input, and outputs a simplified sketch which has the same dimensions as the input image. In order to teach our model to simplify, we present a new dataset of pairs of rough and simplified sketch drawings. By leveraging convolution operators in combination with efficient use of our proposed dataset, we are able to train our sketch simplification model. Our approach naturally overcomes the limitations of existing methods, e.g., vector images as input and long computation time; and we show that meaningful simplifications can be obtained for many different test cases. Finally, we validate our results with a user study in which we greatly outperform similar approaches and establish the state of the art in sketch simplification of raster images. - Sketch-Based Image Synthesis
When the input to pix2pix translation [9] is a badly drawn sketch, the output follows the input edges due to the strict alignment imposed by the translation process. In this paper we propose sketch-to-image generation, where the output edges do not necessarily follow the input edges. We
address the image generation problem using a novel joint image completion approach, where the sketch provides the image context for completing, or generating the output image.We train a deep generative model to learn the joint distribution of sketch and the corresponding image by using joint images. Our deep contextual completion approach has several advantages. First, the simple joint image representation allows for simple and effective definition of losses in the same joint image-sketch space, which avoids complicated issues in cross-domain learning. Second, while the output is related to its input overall, the generated features exhibit more freedom in appearance and do not strictly align with the input features. Third, from the joint image’s point of view, image and sketch are of no difference, thus exactly the same deep joint image completion network can be used for image-to-sketch generation. Experiments evaluated on three different datasets show that the proposed approach can generate more realistic images than the state-ofthe-arts on challenging inputs and generalize well on common categories. - Sketch-Based Image Synthesis
Recently, there have been several promising methods to generate realistic imagery from deep convolutional networks. These methods sidestep the traditional computer graphics rendering pipeline and instead generate imagery at the pixel level by learning from large collections of photos (e.g. faces or bedrooms). However, these methods are of limited utility because it is difficult for a user to control what the network produces. In this paper, we propose a deep adversarial image synthesis architecture that is conditioned on sketched boundaries and sparse color strokes to generate realistic cars, bedrooms, or faces. We demonstrate a sketch based image synthesis system which allows users to scribble over the sketch to indicate preferred color for objects. Our network can then generate convincing images that satisfy both the color and the sketch constraints of user. The network is feed-forward which allows users to see the effect of their edits in real time. We compare to recent work on sketch to image synthesis and show that our approach can generate more realistic, more diverse, and more controllable outputs. The architecture is also effective at user-guided colorization of grayscale images.
sketch 相关论文的更多相关文章
- Kintinuous 相关论文 Volume Fusion 详解
近几个月研读了不少RGBD-SLAM的相关论文,Whelan的Volume Fusion系列文章的效果确实不错,而且开源代码Kintinuous结构清晰,易于编译和运行,故把一些学习时自己的理解和经验 ...
- Neural ODE相关论文摘要翻译
*****仅供个人学习记录***** Neural Ordinary Differential Equations[2019] 论文地址:[1806.07366] Neural Ordinary Di ...
- ACL2016信息抽取与知识图谱相关论文掠影
实体关系推理与知识图谱补全 Unsupervised Person Slot Filling based on Graph Mining 作者:Dian Yu, Heng Ji 机构:Computer ...
- SDN网络虚拟化、资源映射等相关论文粗读
1. Control Plane Latency with SDN Network Hypervisors: The Cost of Virtualization 年份:2016 来源:IEEE NE ...
- 带状态论文粗读(三)[引用openstate的相关论文阅读]
一 文章名称:FLOWGUARD: Building Robust Firewalls for Software-Defined Networks 发表时间:2014 期刊来源:--- 解决问题: 一 ...
- 2017年研究生数学建模D题(前景目标检测)相关论文与实验结果
一直都想参加下数学建模,通过几个月培训学到一些好的数学思想和方法,今年终于有时间有机会有队友一起参加了研究生数模,but,为啥今年说不培训直接参加国赛,泪目~_~~,然后比赛前也基本没看,直接硬刚.比 ...
- MR 图像分割 相关论文摘要整理
<多分辨率水平集算法的乳腺MR图像分割> 针对乳腺 MR 图像信息量大.灰度不均匀.边界模糊.难分割的特点, 提出一种多分辨率水平集乳腺 MR图像分割算法. 算法的核心是首先利用小波多尺度 ...
- 分颜色通道SR的相关论文
1.SRCNN-译文.doc https://max.book118.com/html/2017/0628/118607667.shtm 见SRCNN翻译:彩色通道的实验 - wangxujin666 ...
- ELMO及前期工作 and Transformer及相关论文
论文1 https://arxiv.org/pdf/1705.00108.pdf Semi-supervised sequence tagging with bidirectional languag ...
随机推荐
- nginx alias
A path to the file is constructed by merely adding a URI to the value of the root directive. If a UR ...
- DNS_PROBE_FINISHED_NXDOMAIN 问题解决
手动设置 (说明:如果您使用DNS有特殊设置,请保存设置后再进行操作) 1.打开[控制面板]→[网络连接]→打开[本地连接]→[属性]:2.双击[Internet 协议(TCP/IP)]→选择[自 ...
- 常用的sql语法_Row_Number
可用来分页,也可以用来egg:获取同类型的最新的信息 ROW_NUMBER() 说明:返回结果集分区内行的序列号,每个分区的第一行从1开始.语法:ROW_NUMBER () OVER ([ < ...
- leetcode 217. Contains Duplicate 287. Find the Duplicate Number 442. Find All Duplicates in an Array 448. Find All Numbers Disappeared in an Array
后面3个题都是限制在1-n的,所有可以不先排序,可以利用巧方法做.最后两个题几乎一模一样. 217. Contains Duplicate class Solution { public: bool ...
- [转]TortoiseSVN客户端重新设置用户名和密码
在第一次使用TortoiseSVN从服务器CheckOut的时候,会要求输入用户名和密码,这时输入框下面有个选项是保存认证信息,如果选了这个选项,那么以后就不用每次都输入一遍用户名密码了. 不过,如果 ...
- 数字电路中应避免产生不必要的锁存器 Latch
锁存器(Latch)是数字逻辑电路中很重要的一种基本电路,常见的锁存器包括三个端口:数据输入口.数据输出口.使能端.当使能端为高电平时,输入口的数据直接送到输出口,此时输入输出口可以看成是直接连通的: ...
- (转)LR性能测试结果样例分析
原文作者:猥琐丶欲为 传送门:http://www.cnblogs.com/hyzhou/archive/2011/11/16/2251316.html 测试结果分析 LoadRunner性能测试结果 ...
- Java中队列
定义 队的操作是在两端进行,一端只能进行插入操作(入队),称为队尾,一端只能进行删除操作(出队),称为队尾. 队列的运算规则是FIFO(first in first out). 队列的入队.出队操作分 ...
- 一、用Delphi10.3 创建一条JSON数据
一.用Delphi10.3构造一个JSON数据,非常之容易,代码如下: uses System.JSON; procedure TForm1.Button1Click(Sender: TObject) ...
- 2018-11-26 BIG DATA ANALYSIS