bzoj3167 [Heoi2013]Sao
这题神坑啊……明明是你菜
首先大家都知道原题等价于给每个点分配一个$1$~$n$且两两不同的权值,同时还需要满足一些大于/小于关系的方案数。
先看一眼数据范围,既然写明了$n\le 1000$,那就应该是什么$O(n^2)$的做法了。显然这个东西只能是个DP,考虑到题中给出的是一个树形结构,那么就可以利用子树的相对独立性进行DP:设$f_{i,j}$表示以$i$为根的子树中有$j$个点的权值大于$i$的权值时的方案数,显然最终答案就是$\sum_{i}f_{root,i}$。
然后考虑怎么求出答案。通常树形DP都是自底向上逐个合并来得到每个点的DP值的,但注意这个DP无法做到像普通的树形DP一样可以快速(比如$O(1)$或者$O(\log^2 n)$之类)合并。不过这个DP还是可以比较高效地合并的,设要合并的两个子树大小分别为$n,m$,那么我们就可以通过枚举每一对$(i,j)$对应的$f_{\dots,i}$和$f_{\dots,j}$对合并后的DP数组的贡献来在$O(nm)$的时间内得到它们合并后的DP数组。
具体的合并过程就不写了,大体思路是先枚举最后$i$的权值在整个子树中的排名,然后枚举另一棵子树中有几个点权值比$i$的权值小,最后换元得到枚举$(i,j)$的形式。顺便一提,这个DP方程还需要一个前缀和优化才能做到$O(nm)$合并,还有大于和小于两种情况需要分开处理。
/**************************************************************
Problem: 3167
User: _Angel_
Language: C++
Result: Accepted
Time:3984 ms
Memory:8792 kb
****************************************************************/
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
const int maxn=,p=;
int C[maxn][maxn];
struct DP{
int f[maxn],n;
void clear(){
memset(f,,sizeof(f));
n=;
f[]=;
}
DP &operator+=(const DP &b){
static int g[maxn];
memset(g,,sizeof(g));
for(int i=;i<n;i++)for(int j=,tmp=;j<=b.n;j++){
tmp=(tmp+b.f[j-])%p;
g[i+j]=(g[i+j]+(long long)f[i]*tmp%p*C[i+j][j]%p*C[n+b.n-i-j-][b.n-j]%p)%p;
}
memcpy(f,g,sizeof(f));
n+=b.n;
return *this;
}
DP &operator*=(const DP &b){
static int g[maxn];
memset(g,,sizeof(g));
int sum=;
for(int j=;j<b.n;j++)sum=(sum+b.f[j])%p;
for(int i=;i<n;i++)for(int j=,tmp=sum;j<b.n;j++){
g[i+j]=(g[i+j]+(long long)f[i]*tmp%p*C[i+j][j]%p*C[n+b.n-i-j-][b.n-j]%p)%p;
tmp=(tmp-b.f[j]+p)%p;
}
memcpy(f,g,sizeof(f));
n+=b.n;
return *this;
}
}f[maxn];
void dfs(int);
vector<int>G[maxn];
vector<bool>W[maxn];
int T,n,prt[maxn];
int main(){
C[][]=;
for(int i=;i<=;i++)for(int j=;j<=i;j++){
C[i][j]=C[i-][j];
if(j)C[i][j]=(C[i][j]+C[i-][j-])%p;
}
scanf("%d",&T);
while(T--){
scanf("%d",&n);
memset(prt,,sizeof(prt));
for(int i=;i<=n;i++){
G[i].clear();
W[i].clear();
f[i].clear();
}
for(int i=,x,y;i<n;i++){
char c;
scanf("%d %c%d",&x,&c,&y);
x++;
y++;
G[x].push_back(y);
W[x].push_back(c=='>');
G[y].push_back(x);
W[y].push_back(c=='<');
}
dfs();
int ans=;
for(int i=;i<n;i++)ans=(ans+f[].f[i])%p;
printf("%d\n",ans);
}
return ;
}
void dfs(int x){
for(int i=;i<(int)G[x].size();i++)if(G[x][i]!=prt[x]){
prt[G[x][i]]=x;
dfs(G[x][i]);
if(W[x][i])f[x]+=f[G[x][i]];
else f[x]*=f[G[x][i]];
}
}
bzoj3167 [Heoi2013]Sao的更多相关文章
- [BZOJ3167][HEOI2013]SAO[树dp+组合数学]
题意 给定 \(n\) 个节点和 \(n-1\) 个限制,每个节点有一个权值,每个限制形如:\(a_i< a_j\) ,问有多少个 \(1\) 到 \(n\) 排列满足要求. \(n\leq 1 ...
- 【BZOJ3167】[HEOI2013]SAO(动态规划)
[BZOJ3167][HEOI2013]SAO(动态规划) 题面 BZOJ 洛谷 题解 显然限制条件是一个\(DAG\)(不考虑边的方向的话就是一棵树了). 那么考虑树型\(dp\),设\(f[i][ ...
- 【BZOJ3167/4824】[Heoi2013]Sao/[Cqoi2017]老C的键盘
[BZOJ3167][Heoi2013]Sao Description WelcometoSAO(StrangeandAbnormalOnline).这是一个VRMMORPG,含有n个关卡.但是,挑战 ...
- 3167: [Heoi2013]Sao [树形DP]
3167: [Heoi2013]Sao 题意: n个点的"有向"树,求拓扑排序方案数 Welcome to Sword Art Online!!! 一开始想错了...没有考虑一个点 ...
- P4099 [HEOI2013]SAO
P4099 [HEOI2013]SAO 贼板子有意思的一个题---我()竟然没看题解 有一张连成树的有向图,球拓扑序数量. 树形dp,设\(f[i][j]\)表示\(i\)在子树中\(i\)拓扑序上排 ...
- BZOJ 3167: [Heoi2013]Sao
3167: [Heoi2013]Sao Time Limit: 30 Sec Memory Limit: 256 MBSubmit: 96 Solved: 36[Submit][Status][D ...
- P4099 [HEOI2013]SAO(树形dp)
P4099 [HEOI2013]SAO 我们设$f[u][k]$表示以拓扑序编号为$k$的点$u$,以$u$为根的子树中的元素所组成的序列方案数 蓝后我们在找一个以$v$为根的子树. 我们的任务就是在 ...
- [HEOI2013]SAO(树上dp,计数)
[HEOI2013]SAO (这写了一个晚上QAQ,可能是我太蠢了吧.) 题目说只有\(n-1\)条边,然而每个点又相互联系.说明它的结构是一个类似树的结构,但是是有向边连接的,题目问的是方案个数,那 ...
- 【做题记录】 [HEOI2013]SAO
P4099 [HEOI2013]SAO 类型:树形 \(\text{DP}\) 这里主要补充一下 \(O(n^3)\) 的 \(\text{DP}\) 优化的过程,基础转移方程推导可以参考其他巨佬的博 ...
随机推荐
- 使用python进行短信轰炸
本文作者:i春秋作家——Hacker1ee 大家好,我是1ee(因为在作家群,就不加Hacker这个前缀了,怕被大佬打..) 刚加入i春秋作家组希望大家多多关照,也欢迎大家找我交流 今天我来讲讲我最近 ...
- echarts4 主题切换
<!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" content ...
- 二:maven构建module
通常情况下,我们一个项目是需要分多个模块的,这是我们用maven管理项目就需要构建一个多模块的项目: 通常的结构是一个模块中有一个主项目,下面包含多个子项目,如果是web项目则子项目中有一个是java ...
- 直接访问实例变量 VS 通过点语法访问实例变量
直接访问实例变量,不会经过 OC 的方法派发机制,速度比较块.会直接访问对象的实例变量对应的内存. 直接访问实例变量,不会调用"设置方法".绕过了相关属性对应的"内存管理 ...
- pods报错修复方法
### Error ``` RuntimeError - [!] Xcodeproj doesn't know about the following attributes {"inputF ...
- yii2之ActiveForm表单使用
因目前项目并非前后端分离模式,且用到PHP的yii2框架(所有html代码,js较多内嵌在.php文件内多少采用同步提交[喷墨中...]),遂对于前端面上需要用到的yii2小组件一些整理(因是前端若涉 ...
- SpringBoot入门(IDEA篇)(一)
一.SpringBoot简介 开发团队:Pivotal团队 主要目的:简化新Spring应用的初始搭建以及开发过程. 秉持理念:约定优于配置.(该框架使用了特定的方式来进行配置,从而使开发人员不再需要 ...
- Vue中子组件调用父组件的方法
Vue中子组件调用父组件的方法 相关Html: <!DOCTYPE html> <html lang="en"> <head> <meta ...
- 《LeetBook》leetcode题解(17):Letter Combinations of a Phone Number[M]
我现在在做一个叫<leetbook>的免费开源书项目,力求提供最易懂的中文思路,目前把解题思路都同步更新到gitbook上了,需要的同学可以去看看 书的地址:https://hk029.g ...
- css 设置滚动条的样式
/*移动端显示滚动条*/ .layui-table-body::-webkit-scrollbar { -webkit-appearance: none; } .layui-table-body::- ...