传统神经网络ANN训练算法总结
学习/训练算法分类
神经网络类型的不同,对应了不同类型的训练/学习算法。因而根据神经网络的分类,总结起来,传统神经网络的学习算法也可以主要分为以下三类:
1)前馈型神经网络学习算法-----(前馈型神经网络)
2)反馈型神经网络学习算法------(反馈型神经网络)
3)自组织神经网络学习算法------(自组织神经网络)
以下我们将通过三类典型的神经网络模型分别阐述这三类不同的学习算法其区别与相似点。
虽然针对不同的网络模型,这里产生了三类不同类型的训练算法,但是总结起来,这三类训练算法都可以归属到两种类型的机器训练方法中,即监督型学习算法和非监督型
学习算法。在20-30年的神经网络学习算法研究过程中,科学家往往都通过将监督型学习算法和非监督型学习算法进行单独或混合使用,提出并构建出了不同类型的训练算法及
其改进算法。因而总结起来现今的神经网络训练算法都可以归类到监督型学习算法和非监督型学习算法中,这在后续讲解的Deep Learning中的DBNs网络学习中也会体现出
来。当然目前也提出一种半监督学习方法,其定义为。
半监督学习(Semi-supervised Learning)是模式识别和机器学习领域研究的重点问题,是监督学习与无监督学习相结合的一种学习方法。它主要考虑如何利用少量的标注样本和大量的未标注样本进行训练和分类的问题。半监督学习对于减少标注代价,提高学习机器性能具有非常重大的实际意义。
半监督学习是监督学习算法和非监督学习算法的结合体,可以认为是两种方法的结合型算法,其根源也归属为两类本质的学习算法,因而也逃不脱监督学习和非监督学习领域圈,这里我们就不再进一步深入讨论半监督学习算法了。
在以下传统神经网络训练算法的总结中我们也将具体指明具体的训练算法和监督型学习算法和非监督型学习算法的关系。
BP神经网络训练算法
1、初始化网络权值和神经元的阈值(最简单的办法就是随机初始化)
2、前向传播:按照公式一层一层的计算隐层神经元和输出层神经元的输入和输出。
3、后向传播:根据公式修正权值和阈值
直到满足终止条件。
算法通过一定的判定函数,对前向传播结果进行判定,并通过后向传播过程对网络参数进行修正,起到监督学习的作用,因而传统的BP经网络训练过程可以归纳为一类典型的监督学习过程。
BP是后向传播的英文缩写,那么传播对象是什么?传播的目的是什么?传播的方式是后向,可这又是什么意思呢。
传播的对象是误差,传播的目的是得到所有层的估计误差,后向是说由后层误差推导前层误差:
即BP的思想可以总结为
- “BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)”
我们来看一个最简单的三层BP:
- “BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。”
BP利用一种称为激活函数来描述层与层输出之间的关系,从而模拟各层神经元之间的交互反应。
激活函数必须满足处处可导的条件。那么比较常用的是一种称为S型函数的激活函数:
那么上面的函数为什么称为是S型函数呢:
我们来看它的形态和它导数的形态:
p.s. S型函数的导数:
神经网络的学习目的:
学习的核心:
权值调整规则,即在学习过程中网络中各神经元的连接权变化所依据的一定的调整规则。
二,有监督的BP模型训练过程
1. 思想
有监督的BP模型训练表示我们有一个训练集,它包括了: input X 和它被期望拥有的输出 output Y
所以对于当前的一个BP模型,我们能够获得它针对于训练集的误差
所以BP的核心思想就是:将输出误差以某种形式通过隐层向输入层逐层反传,这里的某种形式其实就是:
也就是一种 "信号的正向传播 ----> 误差的反向传播"的过程:
2.具体
这里解释下根据误差对权值的偏导数来修订权值:
References
http://www.360doc.com/content/13/1217/13/9282836_337854682.shtml
传统神经网络ANN训练算法总结的更多相关文章
- 传统神经网络ANN训练算法总结 参考 。 以后研究
http://blog.163.com/yuyang_tech/blog/static/21605008320146451352506/ 传统神经网络ANN训练算法总结 2014-07-04 17:1 ...
- 人工神经网络--ANN
神经网络是一门重要的机器学习技术.它是目前最为火热的研究方向--深度学习的基础.学习神经网络不仅可以让你掌握一门强大的机器学习方法,同时也可以更好地帮助你理解深度学习技术. 本文以一种简单的,循序的方 ...
- 人工神经网络反向传播算法(BP算法)证明推导
为了搞明白这个没少在网上搜,但是结果不尽人意,最后找到了一篇很好很详细的证明过程,摘抄整理为 latex 如下. (原文:https://blog.csdn.net/weixin_41718085/a ...
- [DL学习笔记]从人工神经网络到卷积神经网络_1_神经网络和BP算法
前言:这只是我的一个学习笔记,里边肯定有不少错误,还希望有大神能帮帮找找,由于是从小白的视角来看问题的,所以对于初学者或多或少会有点帮助吧. 1:人工全连接神经网络和BP算法 <1>:人工 ...
- 神经网络和BP算法推导
注意:绘画太难了,因为他们画,本文中的所有插图来自基本算法饺子机类.请勿转载 1.习模型: 事实上,基本上全部的基本机器学习模型都能够概括为下面的特征:依据某个函数,将输入计算并输出. 图形化表示为下 ...
- 【原创 深度学习与TensorFlow 动手实践系列 - 2】第二课:传统神经网络
第二课 传统神经网络 <深度学习>整体结构: 线性回归 -> 神经网络 -> 卷积神经网络(CNN)-> 循环神经网络(RNN)- LSTM 目标分类(人脸识别,物品识别 ...
- 神经网络反向传播算法&&卷积神经网络
听一遍课程之后,我并不太明白这个算法的奇妙之处?? 为啥? 神经网络反向传播算法 神经网络的训练依靠反向传播算法,最开始输入层输入特征向量,网络层计算获得输出,输出层发现输出和正确的类号不一样,这时就 ...
- 从 0 开始机器学习 - 神经网络反向 BP 算法!
最近一个月项目好忙,终于挤出时间把这篇 BP 算法基本思想写完了,公式的推导放到下一篇讲吧. 一.神经网络的代价函数 神经网络可以看做是复杂逻辑回归的组合,因此与其类似,我们训练神经网络也要定义代价函 ...
- EM算法(2):GMM训练算法
目录 EM算法(1):K-means 算法 EM算法(2):GMM训练算法 EM算法(3):EM算法运用 EM算法(4):EM算法证明 EM算法(2):GMM训练算法 1. 简介 GMM模型全称为Ga ...
随机推荐
- Vue2学习笔记:事件对象、事件冒泡、默认行为
1.事情对象 <!DOCTYPE html> <html> <head> <title></title> <meta charset= ...
- Html.Partial()传值的问题
@Html.Partial("Test", Model, new ViewDataDictionary { { "a", "b" } }); ...
- [翻译] ios-image-filters
ios-image-filters https://github.com/esilverberg/ios-image-filters photoshop-style filter interface ...
- 转载、Python的编码处理(二)
以下转自于:wklken的博客,写的非常好的一段有关编码的总结. Python-进阶-编码处理小结 整理下python编码相关的内容 注意: 以下讨论为Python2.x版本, Py3k的待尝试 开始 ...
- mysql 批量插入500W 测试
set_time_limit(800);$dsn = 'mysql:host=localhost;dbname=test';$db = new PDO($dsn,'root','',array(PDO ...
- 字符串到-->list到-->字典的转变
怎么把字符串变成字典呢?? 要先转成列表list(用split方法),然后再把列表转成字典,这时候就用到-->怎么把列表转换成字典呢??列表的索引和字典的新增,然后就能把字符串转成字典了.
- Django 通过APNS推送消息
最近手上一个项目需要通过APNS向app推送消息,由于后端采用drf框架,在github上找了好多模块,最终发现pzanitti大神的推送模块 django-push-notifications 比较 ...
- 如何使用Jfreechart生成柱状图?
JFreeChart是JAVA平台上的一个开放的图表绘制类库. 首先 (http://www.jfree.org /jfreechart) 总这个网址下载所需要的库,然后解压,放在某个地方. 我们默认 ...
- Django template 过滤器
转载自: http://www.lidongkui.com/django-template-filter-table 一.形式:小写 {{ name | lower }} 二.过滤器是可以嵌套的,字符 ...
- BZOJ4259:残缺的字符串(FFT)
Description 很久很久以前,在你刚刚学习字符串匹配的时候,有两个仅包含小写字母的字符串A和B,其中A串长度为m,B串长度为n.可当你现在再次碰到这两个串时,这两个串已经老化了,每个串都有不同 ...