梯度下降法求解函数极大值-Matlab
目录
题目
作答
本文使用MATLAB作答
1. 建立函数文件ceshi.m
function [x1,y1,f_now,z] = ceshi(z1,z2)
%%%%%%%%%%%%%% 梯度下降法求函数局部极大值@冀瑞静 %%%%%%%%%%%%%%%%%%
% 函数:f(x,y)=
% 目的:求局部极大值和对应的极大值点坐标
% 方法:梯度下降法
% 理论:
% 方向导数:偏导数反应的是函数沿坐标轴方向的变化率,但许多物理现象告诉我们,只考虑函数沿坐标轴方向的变化率是不够的,有必要研究函数沿任一指定方向的变化率。
% 函数f(x,y)在点P0(x0,y0)可微分,那么函数在改点沿任一方向l的方向导数存在,其值为:f'x(x0,y0)*cos(α)+f'y(x0,y0)*cos(β),其中,cos(α),cos(β)是方向l的方向余弦。
% 梯 度:是与方向导数有关联的另一个概念,梯度是一个向量,表示为:'x(x0,y0)*i+f'y(x0,y0)*j。
% 关 系:
% f'x(x0,y0)*cos(α)+f'y(x0,y0)*cos(β)
% =grad f(x0,y0)*el
% =|grad f(x0,y0)|*cos(θ),其中el=(cos(α),cos(β))是与方向l同方向的单位向量。
% 变化率:函数沿某个方向的变化率指的是函数值沿这个方向变化的快慢。
% θ=0,el与梯度同向,函数增加最快,函数在这个方向的方向导数达到最大值,这个最大值就是梯度的模;
% θ=π,el与梯度反向,函数减少最快,函数在这个方向的方向导数达到最小值;
% θ=π/2,el与梯度方向正交,函数变化率为零。
x0 = z1;
y0 = z2;
f_now = exp((sin(y0) - 1)^2)*cos(x0) + (x0 - y0)^2 + exp((cos(x0) - 1)^2)*sin(y0);%求解函数的极大值点,先求其函数负值的极小值点
z=0; %用于记录循环次数
f_error = 1; %f_error为迭代差值,作为判别标准
h = 1.0e-8; %步长
while f_error>1.0e-8 %判定标准:1.前后两次的差>1.0e-8(选用);2.迭代次数达到XX次;
if (x0<-5)||(x0>0)
break;
end
if ((y0<-5)||(y0>0))
break;
end
f_val = f_now;
x1 = x0 + h * (2*x0 - 2*y0 - exp((sin(y0) - 1)^2)*sin(x0) - 2*exp((cos(x0) - 1)^2)*sin(x0)*sin(y0)*(cos(x0) - 1));
y1 = y0 + h * (2*y0 - 2*x0 + exp((cos(x0) - 1)^2)*cos(y0) + 2*exp((sin(y0) - 1)^2)*cos(x0)*cos(y0)*(sin(y0) - 1));
f_now = exp((sin(y1) - 1)^2)*cos(x1) + (x1 - y1)^2 + exp((cos(x1) - 1)^2)*sin(y1) ;
f_error = f_now-f_val;
x0 = x1;
y0 = y1;
z = z+1;
end
end
2. 这是调用的命令,也可以写在.m文件里
clear
clc
[x1,y1,f_out] = ceshi(-1,-2);
fprintf('%.3f\t',x1,y1,f_out); %f保留小数点后三位
3. 输出结果
0.000 -1.585 56.088
这是截图
题外话
第一次发博客,开始涉足计算机视觉领域,欢迎拍砖。
梯度下降法求解函数极大值-Matlab的更多相关文章
- 机器学习---用python实现最小二乘线性回归算法并用随机梯度下降法求解 (Machine Learning Least Squares Linear Regression Application SGD)
在<机器学习---线性回归(Machine Learning Linear Regression)>一文中,我们主要介绍了最小二乘线性回归算法以及简单地介绍了梯度下降法.现在,让我们来实践 ...
- OpenACC 梯度下降法求解线性方程的优化
▶ 书上第二章,用一系列步骤优化梯度下降法解线性方程组.才发现 PGI community 编译器不支持 Windows 下的 C++ 编译(有 pgCC 命令但是不支持 .cpp 文件,要专业版才支 ...
- 使用matlab用优化后的梯度下降法求解达最小值时参数
matlab可以用 -Conjugate gradient -BFGS -L-BFGS 等优化后的梯度方法来求解优化问题.当feature过多时,最小二乘计算复杂度过高(O(n**3)),此时 这一些 ...
- tensorflow实现svm多分类 iris 3分类——本质上在使用梯度下降法求解线性回归(loss是定制的而已)
# Multi-class (Nonlinear) SVM Example # # This function wll illustrate how to # implement the gaussi ...
- tensorflow实现svm iris二分类——本质上在使用梯度下降法求解线性回归(loss是定制的而已)
iris二分类 # Linear Support Vector Machine: Soft Margin # ---------------------------------- # # This f ...
- 理解梯度下降法(Gradient Decent)
1. 什么是梯度下降法? 梯度下降法(Gradient Decent)是一种常用的最优化方法,是求解无约束问题最古老也是最常用的方法之一.也被称之为最速下降法.梯度下降法在机器学习中十分常见,多用 ...
- 梯度下降法原理与python实现
梯度下降法(Gradient descent)是一个一阶最优化算法,通常也称为最速下降法. 要使用梯度下降法找到一个函数的局部极小值,必须向函数上当前点对应梯度(或者是近似梯度)的反方向的规定步长距离 ...
- 梯度下降法(BGD、SGD)、牛顿法、拟牛顿法(DFP、BFGS)、共轭梯度法
一.梯度下降法 梯度:如果函数是一维的变量,则梯度就是导数的方向: 如果是大于一维的,梯度就是在这个点的法向量,并指向数值更高的等值线,这就是为什么求最小值的时候要用负梯度 梯度下降法(Gr ...
- [ch04-02] 用梯度下降法解决线性回归问题
系列博客,原文在笔者所维护的github上:https://aka.ms/beginnerAI, 点击star加星不要吝啬,星越多笔者越努力. 4.2 梯度下降法 有了上一节的最小二乘法做基准,我们这 ...
随机推荐
- Kubernetes探索学习002--Kubernetes的基本使用
Kubernetes 的基本使用方法 原则:使用YAML文件描述你要部署的API对象! 以部署nginx静态站点为例,具体操作及内容如下 1.编写YAML文件 [root@kubernetes01 ~ ...
- sprint2(第九天)
今天是sprint2的最后一天,已经完成功能有可以实现点餐功能.菜品的添加和删减.菜品数量的增减.添加备注.查看订单详情.订单状态.提交订单.后厨可以查看订单信息,对菜品的状态进行操作,是否完成烹饪, ...
- Daily Scrumming 2015.10.21(Day 2)
今明两天任务表 Member Today’s Task Tomorrow’s Task 江昊 配置ruby与rails环境 配置mysql与数据库用户管理 配置apache2环境 学习rails Ac ...
- Week-2-作业1
第一章 概论 1.什么是程序? 答:在学习软件工程导论前,我们已经学习了一些计算机语言和数据结构这样的课程,并深刻的知道“程序=数据结构+算法”,但在学习中还是会产生如书中1.1讲所提到的那些疑问,二 ...
- 关于51精确延时及keil仿真延时时间
转自:http://blog.sina.com.cn/s/blog_980e19e00101b5dh.html 有时候需要精确的延时,比如18B20温度传感器对时序要求非常严格,必须精确到微秒级别 一 ...
- Weka平台学习
链接:http://www.cs.waikato.ac.nz/ml/weka/index.html 一简介: WEKA的全名是怀卡托智能分析环境(Waikato Environment for Kno ...
- Scrum 7.0
Sprint回顾 让我们一次比一次做得更好. 1.回顾组织 主题:“我们怎样才能在下个sprint中做的更好?” 时间:设定为1至2个小时. 参与者:整个团队. 场所:能够在不受干扰的情况下讨论. ...
- 0603团队变化+sprint第二个冲刺
开始一个新的冲刺: 起止:2016.6.1~2016.6.14 按照以下过程进行 ProductBacklog:继续向下细化 Sprint 计划会议:确定此次冲刺要完成的目标 Sprint Backl ...
- Scrum团队 《构建之法》第6~7章
Scrum团队成立 团队名称: 22# 团队目标:做好每次布置的任务 还有提升自己 团队口号:做好现在,展望未来 团队成员:陈楷淇,张裕发,陈泽展,彭一建 角色分配 产品负责人(决定开发内容和优先级排 ...
- 佣金维护测试sql
SELECT bmc.memberid , case then decode(bmc.source, , , 'TOPfitIBL') ELSE decode(bmc.source, , , 'TOP ...