Chapter 7(图)

1.Prim算法生成最小生成树
//Prim算法生成最小生成树
void MiniSpanTree_Prim(MGraph G)
{
int min,i,j,k;
int adjvex[MAXVEX];
int lowcost[MAXVEX];
lowcost[0] = 0;
adjvex[0] = 0;
for(i = 1;i < G.numVertexes;i++)
{
lowcost[i] = G.arc[0][i];
adjvex[i] = 0;
}
for(i = 1;i < G.numVertexes;i++)
{
min = INFINITY;
j = 1;k = 0;
while(j < G.numVertexes)
{
if(lowcost[j] != 0 && lowcost[j] < min)
{
min = lowcost[j];
k = j;
}
j++;
}
printf("(%d,%d)",adjvex[k],k);
lowcost[k] = 0;
for(j = i;j < G.numVertexes;j++)
{
if(lowcost[j]!=0 && G.arc[k][j] < lowcost[j])
{
lowcost[j] = G.arc[k][j];
adjvex[j] = k;
}
}
}
}
//Prim算法生成最小生成树
void MiniSpanTree_Prim(MGraph G)
{
int min,i,j,k;
int adjvex[MAXVEX];
int lowcost[MAXVEX];
lowcost[0] = 0;
adjvex[0] = 0;
for(i = 1;i < G.numVertexes;i++)
{
lowcost[i] = G.arc[0][i];
adjvex[i] = 0;
}
for(i = 1;i < G.numVertexes;i++)
{
min = INFINITY;
j = 1;k = 0;
while(j < G.numVertexes)
{
if(lowcost[j] != 0 && lowcost[j] < min)
{
min = lowcost[j];
k = j;
}
j++;
}
printf("(%d,%d)",adjvex[k],k);
lowcost[k] = 0;
for(j = i;j < G.numVertexes;j++)
{
if(lowcost[j]!=0 && G.arc[k][j] < lowcost[j])
{
lowcost[j] = G.arc[k][j];
adjvex[j] = k;
}
}
}
}
//Kruskal算法生成最小生成树
void MiniSpanTree_Kruskal(MGraph G)
{
int i,n,m;
Edge edges[MAXEDGE];
int parentp[MAXVEX];
//省略将邻接矩阵转化为边集数组edges并按权由小到大排序的代码
for(i = 0; i < G.numEdges;i++)
{
parent[i] = 0;
}
for(i = o;i < G.numEdges;i++)
{
n = Find(parent,edges[i].begin);
m = Find(parent,edges[i].end);
if(n != m)
{
parent[n] = m;
printf("(%d,%d) %d ",edges[i].begin,edges[i].end,edges[i].weight);
}
}
}
int Find(int *parent,int f)
{
while(parent[f] > 0)
{
f = parent[f];
}
return f;
}
//Kruskal算法生成最小生成树
void MiniSpanTree_Kruskal(MGraph G)
{
int i,n,m;
Edge edges[MAXEDGE];
int parentp[MAXVEX];
//省略将邻接矩阵转化为边集数组edges并按权由小到大排序的代码
for(i = 0; i < G.numEdges;i++)
{
parent[i] = 0;
}
for(i = o;i < G.numEdges;i++)
{
n = Find(parent,edges[i].begin);
m = Find(parent,edges[i].end);
if(n != m)
{
parent[n] = m;
printf("(%d,%d) %d ",edges[i].begin,edges[i].end,edges[i].weight);
}
}
}
int Find(int *parent,int f)
{
while(parent[f] > 0)
{
f = parent[f];
}
return f;
}
//迪杰斯特拉(Dijkstra)算法
#define MAXVEX 9
#define INFINITY 65535
typedef int Patharc[MAXVEX];
typedef int ShortPathTable[MAXVEX];
void ShortestPath_Dijkstra(MGraph G,INT V0,Patharc *P,ShortPathTable *D)
{
int v,w,k,min;
int final[MAXVEX];
for(v = 0;v < G.numVertexes;v++)
{
final[v] = 0;
(*D)[v] = G.arc[v0][v];
(*P)[v] = 0;
}
(*D)[v0] = 0;
final[vo] = 1;
for(v = 1;v < G.numVertexes;w++)
{
min = INFINITY;
for(w = 0;w < G.numVertexes;w++)
{
if(!final[w] && (*D)[w] < min)
{
k = w;
min = (*D)[w];
}
}
final[k] = 1;
for(w = 0;w < G.numVertexes;w++)
{
if(!final[w] && (min+G.arc[k][w])< (*D)[w])
{
(*D)[w] = min + G.arc[k][w];
(*P)[w] = k;
}
}
}
}
//迪杰斯特拉(Dijkstra)算法
#define MAXVEX 9
#define INFINITY 65535
typedef int Patharc[MAXVEX];
typedef int ShortPathTable[MAXVEX];
void ShortestPath_Dijkstra(MGraph G,INT V0,Patharc *P,ShortPathTable *D)
{
int v,w,k,min;
int final[MAXVEX];
for(v = 0;v < G.numVertexes;v++)
{
final[v] = 0;
(*D)[v] = G.arc[v0][v];
(*P)[v] = 0;
}
(*D)[v0] = 0;
final[vo] = 1;
for(v = 1;v < G.numVertexes;w++)
{
min = INFINITY;
for(w = 0;w < G.numVertexes;w++)
{
if(!final[w] && (*D)[w] < min)
{
k = w;
min = (*D)[w];
}
}
final[k] = 1;
for(w = 0;w < G.numVertexes;w++)
{
if(!final[w] && (min+G.arc[k][w])< (*D)[w])
{
(*D)[w] = min + G.arc[k][w];
(*P)[w] = k;
}
}
}
}
//弗洛伊德(Floyd算法)
typedef int PathMatirx[MAXVEX][MAXVEX];
typedef int ShortPathTable[MAXVEX][MAXVEX];
void ShortestPath_Floyd(MGraph G,Pathmatirx *P,ShortPathTable *D)
{
int v,w,k;
for(v = 0;v < G.numVertexes; ++v)
{
for(w = 0;w < G.numVertexes;++w)
{
(*D)[v][w] = G.matirx[v][w];
(*P)[v][w] = w;
}
}
for(k = 0;k < G.numVertexes;++k)
{
for(v = 0;v < G.numVertexes;++v)
{
for(w = 0;w < G.numVertexes;++w)
{
if((*D)[v][w] > (*D)[v][k]+(*D)[k][w])
{
(*D)[v][w] = (*D)[v][w]+(*D)[k][w];
(*P)[v][w] = (*P)[v][k];
}
}
}
}
}
//最短路径显示代码段
for(v = 0;v < Q.numVertexes;++v)
{
for(w = v+1;w < G.numVertexes;w++)
{
printf("v%d-v%d weight: %d ",v,w,D[v][w]);
k = P[v][w];
printf(" path: %d",v);
while(k != w)
{
printf(" -> %d",k);
k = P[k][w];
}
printf(" -> %d\n",w);
}
printf("\n");
}
//弗洛伊德(Floyd算法)
typedef int PathMatirx[MAXVEX][MAXVEX];
typedef int ShortPathTable[MAXVEX][MAXVEX];
void ShortestPath_Floyd(MGraph G,Pathmatirx *P,ShortPathTable *D)
{
int v,w,k;
for(v = 0;v < G.numVertexes; ++v)
{
for(w = 0;w < G.numVertexes;++w)
{
(*D)[v][w] = G.matirx[v][w];
(*P)[v][w] = w;
}
}
for(k = 0;k < G.numVertexes;++k)
{
for(v = 0;v < G.numVertexes;++v)
{
for(w = 0;w < G.numVertexes;++w)
{
if((*D)[v][w] > (*D)[v][k]+(*D)[k][w])
{
(*D)[v][w] = (*D)[v][w]+(*D)[k][w];
(*P)[v][w] = (*P)[v][k];
}
}
}
}
}
//最短路径显示代码段
for(v = 0;v < Q.numVertexes;++v)
{
for(w = v+1;w < G.numVertexes;w++)
{
printf("v%d-v%d weight: %d ",v,w,D[v][w]);
k = P[v][w];
printf(" path: %d",v);
while(k != w)
{
printf(" -> %d",k);
k = P[k][w];
}
printf(" -> %d\n",w);
}
printf("\n");
}
附件列表
Chapter 7(图)的更多相关文章
- Chapter 4 图
Chapter 4 图 . 1- 图的存储结构 无向图:对称 有向图:…… 2- 图的遍历 1 深度优先搜索(DFS) 类似于二叉树的先序遍历 2 广度优先搜索(BFS) 类似于二叉树 ...
- 【译】x86程序员手册13-第5章 内存管理
Chapter 5 Memory Management 内存管理 The 80386 transforms logical addresses (i.e., addresses as viewed b ...
- 《算法导论》习题解答 Chapter 22.1-5(求平方图)
一.邻接矩阵实现 思路:如果是邻接矩阵存储,设邻接矩阵为A,则A*A即为平方图,只需要矩阵相乘即可: 伪代码: for i=1 to n for j=1 to n for k=1 to n resul ...
- 《算法导论》习题解答 Chapter 22.1-3(转置图)
一.邻接表实现 思路:一边遍历,一边倒置边,并添加到新的图中 邻接表实现伪代码: for each u 属于 Vertex for v 属于 Adj[u] Adj1[v].insert(u); 复杂度 ...
- Android Programming: Pushing the Limits -- Chapter 7:Android IPC -- Messenger
Messenger类实际是对Aidl方式的一层封装.本文只是对如何在Service中使用Messenger类实现与客户端的通信进行讲解,对Messenger的底层不做说明.阅读Android Prog ...
- [转]第四章 使用OpenCV探测来至运动的结构——Chapter 4:Exploring Structure from Motion Using OpenCV
仅供参考,还未运行程序,理解部分有误,请参考英文原版. 绿色部分非文章内容,是个人理解. 转载请注明:http://blog.csdn.net/raby_gyl/article/details/174 ...
- PRML Chapter 2. Probability Distributions
PRML Chapter 2. Probability Distributions P68 conjugate priors In Bayesian probability theory, if th ...
- WITCH CHAPTER 0 [cry] 绝密开发中的史克威尔艾尼克斯的DX12技术演示全貌
西川善司的[WITCH CHAPTER 0 cry]讲座 ~绝密开发中的史克威尔艾尼克斯的DX12技术演示全貌 注:日文原文地址: http://pc.watch.impress.co.jp/d ...
- Chapter 3: Connector(连接器)
一.概述 Tomcat或者称之为Catalina(开发名称),可以简化为两个主要的模块,如下图: 多个Connector关联一个Container.之所以需要多个Connector,是为了处理多种协议 ...
随机推荐
- 1.Python3.6环境部署
标题:Python3.6环境部署文档 作者:刘耀 内容 Linux部署Python3.6环境 Mac部署Python3.6环境 Window10部署Python3.6环境 Pycharm安装 1. L ...
- lscpi命令详解
基础命令学习目录 lspci是一个用来查看系统中所有PCI总线以及连接到该总线上的设备的工具. 命令格式为 lspci -参数 (不加参数显示所有硬件设备) 至于有哪些参数及其详细用法可以看下这篇博客 ...
- [译文]c#扩展方法(Extension Method In C#)
原文链接: https://www.codeproject.com/Tips/709310/Extension-Method-In-Csharp 介绍 扩展方法是C# 3.0引入的新特性.扩展方法使你 ...
- Python 中的一些小技巧
这里是本人收集的一些 Python 小技巧,目前主要是一些实用函数,适合有一定基础的童鞋观看(不会专门介绍使用到的标准库函数).. 一.函数式编程 函数式编程用来处理数据,感觉很方便.(要是再配上管道 ...
- 第十二次作业psp
psp 进度条 代码累积折线图 博文累积折线图 psp饼状图
- bootstrap使用总结
bootstrap是一个webcss框架,集合了html/css/jquery为一家,创建响应式的页面.所谓的响应式就是适配不同的上网设备. 使用bootstrap的步骤: 1.下载bootstrap ...
- angularJS1笔记-(15)-自定义指令(accordion伸缩菜单原始实现)
index.html: <!DOCTYPE html> <html lang="en"> <head> <meta charset=&qu ...
- [2017BUAA软工]第2次个人作业
软工第2次个人作业--代码复审 一.代码复审Check List 1.概要部分 代码能符合需求和规格说明么? 能正确处理题目要求,代码能符合需求和规格. 代码设计是否有周全的考虑? 能正确生成和解出数 ...
- Littleproxy的使用
介绍 LittleProxy是一个用Java编写的高性能HTTP代理,它基于Netty事件的网络库之上.它非常稳定,性能良好,并且易于集成到的项目中. 项目页面:https://github.com/ ...
- PHP 常用函数总结(三)
7.PHP JSON 格式 json_encode ( mixed $value [, int $options = 0 [, int $depth = 512 ]] ) 返回字符串,包含了 valu ...