[题目链接]

http://poj.org/problem?id=2282

[算法]

数位DP

[代码]

#include <algorithm>
#include <bitset>
#include <cctype>
#include <cerrno>
#include <clocale>
#include <cmath>
#include <complex>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <deque>
#include <exception>
#include <fstream>
#include <functional>
#include <limits>
#include <list>
#include <map>
#include <iomanip>
#include <ios>
#include <iosfwd>
#include <iostream>
#include <istream>
#include <ostream>
#include <queue>
#include <set>
#include <sstream>
#include <stdexcept>
#include <streambuf>
#include <string>
#include <utility>
#include <vector>
#include <cwchar>
#include <cwctype>
#include <stack>
#include <limits.h>
using namespace std; int i;
long long a,b;
long long f[][][]; inline void dp(long long m)
{
long long i,j,k,x;
memset(f,,sizeof(f));
f[][][] = ;
for (i = ; i <= ; i++)
{
for (j = ; j <= ; j++)
{
for (k = ; k <= i; k++)
{
if (j != m)
{
for (x = ; x <= ; x++)
f[i][j][k] += f[i - ][x][k];
} else if (k >= )
{
for (x = ; x <= ; x++)
f[i][j][k] += f[i - ][x][k - ];
}
}
}
}
}
inline long long calc(long long x,long long t)
{
long long i,j,k,len = ;
long long res = ;
long long cnt = ;
long long a[];
memset(a,,sizeof(a));
while (x != )
{
a[++len] = x % ;
x /= ;
}
reverse(a + ,a + len + );
for (i = ; i <= len; i++)
{
for (j = ; j <= ; j++)
{
for (k = ; k <= len - i + ; k++)
res += f[len - i + ][j][k] * k;
}
}
for (i = ; i <= len; i++)
{
for (j = ; j < a[i]; j++)
{
if (i == && !j) continue;
for (k = cnt; k <= len; k++)
{
res += f[len - i + ][j][k - cnt] * k;
}
}
if (a[i] == t) cnt++;
}
return res;
} int main()
{ while (scanf("%lld%lld",&a,&b) && (a || b))
{
if (a > b) swap(a,b);
for (i = ; i < ; i++)
{
dp(i);
printf("%lld ",calc(b + ,i) - calc(a,i));
}
dp();
printf("%lld\n",calc(b + ,) - calc(a,));
} return ; }

[POJ 2282] The Counting Problem的更多相关文章

  1. POJ - Problem 2282 - The Counting Problem

    整体思路:对于每一位,先将当前未达到$limit$部分的段 [如 $0$ ~ $10000$] 直接处理好,到下一位时再处理达到$limit$的部分. · $1 × 10 ^ n$以内每个数(包括$0 ...

  2. POJ.3468 A Simple Problem with Integers(线段树 区间更新 区间查询)

    POJ.3468 A Simple Problem with Integers(线段树 区间更新 区间查询) 题意分析 注意一下懒惰标记,数据部分和更新时的数字都要是long long ,别的没什么大 ...

  3. UVA 1640 The Counting Problem UVA1640 求[a,b]或者[b,a]区间内0~9在里面各个数的数位上出现的总次数。

    /** 题目:UVA 1640 The Counting Problem UVA1640 链接:https://vjudge.net/problem/UVA-1640 题意:求[a,b]或者[b,a] ...

  4. POJ 3468.A Simple Problem with Integers-线段树(成段增减、区间查询求和)

    POJ 3468.A Simple Problem with Integers 这个题就是成段的增减以及区间查询求和操作. 代码: #include<iostream> #include& ...

  5. poj 3468 A Simple Problem with Integers 【线段树-成段更新】

    题目:id=3468" target="_blank">poj 3468 A Simple Problem with Integers 题意:给出n个数.两种操作 ...

  6. 线段树(成段更新) POJ 3468 A Simple Problem with Integers

    题目传送门 /* 线段树-成段更新:裸题,成段增减,区间求和 注意:开long long:) */ #include <cstdio> #include <iostream> ...

  7. POJ 1152 An Easy Problem! (取模运算性质)

    题目链接:POJ 1152 An Easy Problem! 题意:求一个N进制的数R.保证R能被(N-1)整除时最小的N. 第一反应是暴力.N的大小0到62.发现当中将N进制话成10进制时,数据会溢 ...

  8. 『The Counting Problem 数位dp』

    The Counting Problem Description 求 [L,R]内每个数码出现的次数. Input Format 若干行,一行两个正整数 L 和 R. 最后一行 L=R=0,表示输入结 ...

  9. POJ2282 The Counting Problem

    题意 Language:DefaultEspañol The Counting Problem Time Limit: 3000MS Memory Limit: 65536K Total Submis ...

随机推荐

  1. usaco 过路费 Cow Toll Paths, 2009 Dec

    Description 翰家有 N 片草地,编号为 1 到 N ,彼此之间由 M 条双向道路连接,第 i 条道路连接了 Ai 和Bi,两片草地之间可能有多条道路,但没有道路会连接同一片草地,现有的道路 ...

  2. 安卓通过UDP协议传输数据,中文乱码的问题

    公司最近需要往智能家居方面发展,需要用到UDP协议传输数据,在网上找到了一些资料,但是发现传输中文的时候有乱码的现象,经过我多番捣鼓,终于解决了这个问题,下面贴上关键代码 客户端: public cl ...

  3. 【PostgreSQL-9.6.3】表继承

    表继承是PostgreSQL特有的,子表可以从父表中继承字段和一些属性.例如: --创建一张表“persons”作为父表: test=# create table persons ( test(# i ...

  4. IT狂人职场路:揭秘华为百度高管如何炼成?

    原文链接:http://www.hdeso.com/waibao/detail.asp?id=45660 原文链接:http://tech.hexun.com/2014-02-18/162264716 ...

  5. node、Mongo项目如何前后端分离提供接口给前端

    node接口编写,vue-cli代理接口方法  通常前端使用的MocK 数据的方法,去模拟假的数据,但是如果有node Mongodb 去写数据的话就不需要在去mock 数据了,具体的方法如下. 首先 ...

  6. 招银网络面试题、考点、知识点总结(Java岗)

    java基础 全是基础不用多说肯定考的多,尤其是招银 OOP特性/java语言特性:封装.继承.多态 多态具体的表现:多态应用举例.如何调用父类方法(super).重写和重载(重写父类方法的规则.构造 ...

  7. 【转载】MySQL之CONCAT()的用法

    mysql CONCAT()函数用于将多个字符串连接成一个字符串,是最重要的mysql函数之一,下面就将为您详细介绍mysql CONCAT()函数,供您参考 mysql CONCAT(str1,st ...

  8. Django MVC与MTV概念 Ajax、分页实现

     MVC与MTV概念 MTV与MVC(了解)        MTV模型(django):            M:模型层(models.py)            T:templates      ...

  9. UI Testing

    UI Test能帮助我们去验证一些UI元素的属性和状态.Apple 在 Xcode 7 中新加入了一套 UI Testing 的工具,其目的就是解决自动化UI测试这个问题.新的 UI Testing ...

  10. ubuntu 16.04 忘记登录密码的解决办法

    1.开机点击ESC或长按Shift,进入GUN GRUB界面  2.选择有recovery mode的选项,按e进入命令行  3.找到有recovery nomodeset的行,删除recovery ...