SDOI2017数字表格
求$\prod_{i=1}^n\prod_{j=1}^n\text{Fib}[\gcd(i,j)]\;\text{mod}\;10^9+7$的值
令$n\leq m$,则有:
\begin{aligned}
\prod_{i=1}^n\prod_{j=1}^nf[\gcd(i,j)]
&=\prod_{d=1}^n\prod_{i=1}^\frac nd\prod_{j=1}^\frac md\text{Fib}[d]^{[\gcd(i,j)=1]}\\
&=\prod_{d=1}^n\text{Fib}[d]^{\sum_{i=1}^n\sum_{j=1}^m[\gcd(i,j)=d]}\\
&=\prod_{d=1}^n\text{Fib}[d]^{\sum_{i=1}^{\left\lfloor\frac nk\right\rfloor}\sum_{j=1}^{\left\lfloor\frac mk\right\rfloor}\sum_{k|\gcd(i,j)}\mu(k)}\\
&=\prod_{d=1}^n\text{Fib}[d]^{\sum_{i=1}^{\left\lfloor\frac nk\right\rfloor}\sum_{j=1}^{\left\lfloor\frac mk\right\rfloor}\sum_{k|i}\sum_{k|j}\mu(k)}\\
&=\prod_{d=1}^n\text{Fib}[d]^{\sum_{i=1}^{\left\lfloor\frac nk\right\rfloor}\sum_{k|i}\sum_{j=1}^{\left\lfloor\frac mk\right\rfloor}\sum_{k|j}\mu(k)}\\
&=\prod_{d=1}^n\text{Fib}[d]^{\sum_{i=1}^{\min\left(\left\lfloor\frac nk\right\rfloor,\left\lfloor\frac mk\right\rfloor\right)}\mu(k)\sum_{i=1}^{\left\lfloor\frac nk\right\rfloor}\sum_{k|i}\sum_{j=1}^{\left\lfloor\frac mk\right\rfloor}\sum_{k|j}1}\\
&=\prod_{d=1}^n\text{Fib}[d]^{\sum_{i=1}^{\min\left(\left\lfloor\frac nk\right\rfloor,\left\lfloor\frac mk\right\rfloor\right)}\mu(k)\sum_{i=1}^{\left\lfloor\frac nk\right\rfloor}\sum_{k|i}1\sum_{j=1}^{\left\lfloor\frac mk\right\rfloor}\sum_{k|j}1}\\
\end{aligned}
...To be continue.
SDOI2017数字表格的更多相关文章
- BZOJ:4816: [Sdoi2017]数字表格
4816: [Sdoi2017]数字表格 Time Limit: 50 Sec Memory Limit: 128 MBSubmit: 501 Solved: 222[Submit][Status ...
- [Sdoi2017]数字表格 [莫比乌斯反演]
[Sdoi2017]数字表格 题意:求 \[ \prod_{i=1}^n \prod_{j=1}^m f[(i,j)] \] 考场60分 其实多推一步就推倒了... 因为是乘,我们可以放到幂上 \[ ...
- 【BZOJ 4816】 4816: [Sdoi2017]数字表格 (莫比乌斯)
4816: [Sdoi2017]数字表格 Time Limit: 50 Sec Memory Limit: 128 MBSubmit: 666 Solved: 312 Description Do ...
- P3704 [SDOI2017]数字表格
P3704 [SDOI2017]数字表格 链接 分析: $\ \ \ \prod\limits_{i = 1}^{n} \prod\limits_{j = 1}^{m} f[gcd(i, j)]$ $ ...
- [SDOI2017]数字表格 --- 套路反演
[SDOI2017]数字表格 由于使用markdown的关系 我无法很好的掌控格式,见谅 对于这么简单的一道题竟然能在洛谷混到黑,我感到无语 \[\begin{align*} \prod\limits ...
- 题解-[SDOI2017]数字表格
题解-[SDOI2017]数字表格 前置知识: 莫比乌斯反演</> [SDOI2017]数字表格 \(T\) 组测试数据,\(f_i\) 表示 \(\texttt{Fibonacci}\) ...
- [SDOI2017]数字表格 & [MtOI2019]幽灵乐团
P3704 [SDOI2017]数字表格 首先根据题意写出答案的表达式 \[\large\prod_{i=1}^n\prod_{j=1}^mf_{\gcd(i,j)} \] 按常规套路改为枚举 \(d ...
- bzoj4816 [Sdoi2017]数字表格
Description Doris刚刚学习了fibonacci数列.用f[i]表示数列的第i项,那么 f[0]=0 f[1]=1 f[n]=f[n-1]+f[n-2],n>=2 Doris用老师 ...
- [SDOI2017]数字表格
Description Doris刚刚学习了fibonacci数列.用f[i]表示数列的第i项,那么 f[0]=0 f[1]=1 f[n]=f[n-1]+f[n-2],n>=2 Doris用老师 ...
- 【刷题】BZOJ 4816 [Sdoi2017]数字表格
Description Doris刚刚学习了fibonacci数列.用f[i]表示数列的第i项,那么 f[0]=0 f[1]=1 f[n]=f[n-1]+f[n-2],n>=2 Doris用老师 ...
随机推荐
- MVC.Net:MVC.Net与WebAPI的IOC实现
我们通过Ninject(http://www.ninject.org/)项目来帮助我们实现MVC.Net与WebAPI项目的IOC实现. 首先我们来看MVC.Net的IOC实现. 1. 通过NuGet ...
- HDU 5502
枚举所有的最大值盒子里糖果为K的情况,对于位置p,dp[p]为p以前的,第p个操作为抽到不是蓝球里的情况,盒子里最多糖果为k的情况的概率.而到p这个位置,可以有连续最多k-1(因为第k个操作必须为抽到 ...
- IBM CEO罗睿兰:科技公司屹立百年的3个秘诀
假设有不论什么科技公司能够完美阐释"转型"这个词的含义,那么这家公司非创立103年的IBM莫属. 如今,它的变化更胜以往. 在<財富>杂志周二于美国加利福尼亚州拉古纳尼 ...
- [Jest] Use property matchers in snapshot tests with Jest
With the right process in place, snapshot tests can be a great way to detect unintended changes in a ...
- android:怎样用一天时间,写出“飞机大战”这种游戏!(无框架-SurfaceView绘制)
序言作为一个android开发人员,时常想开发一个小游戏娱乐一下大家,今天就说说,我是怎么样一天写出一个简单的"飞机大战"的. 体验地址:http://www.wandoujia. ...
- IntelliJ IDEA 14注冊码
User:xring Key:21423-V4P36-U7W8K-8CYUK-93HXA-MKGZ5 User:arix Key:52998-LJT74-J7YEX-UPVT3-Q5GUF-5G4B5 ...
- HTML标签列表
HTML參考手冊 按功能类别排列 New : HTML5 中的新标签. 标签 描写叙述 <!--...--> 定义凝视. <!DOCTYPE> 定义文档类型. <a> ...
- 学习笔记——DISTINCT
DISTINCT印象中向来被人诟病,说它效率低下.但网上那些SQL 面试题答案,却时有用之.其中 COUNT(DISTINCT 句式,我以前很少用,这里做个笔记. 为管理岗位业务培训信息,建立3个表: ...
- poj 2288 Islands and Bridges ——状压DP
题目:http://poj.org/problem?id=2288 状压挺明显的: 一开始写了(记忆化)搜索,但一直T: #include<iostream> #include<cs ...
- 关于每次取PC的值为PC+4的问题
关于ARM的书上常说由于流水线特性,在指令执行期间读取程序计数器时,读出的值需要为当前指令+4 一开始总是不理解,今天被一位大神一语道破其中精髓.... 程序计数器(PC)总是指向“正在取指”的指令 ...