SDOI2017数字表格
求$\prod_{i=1}^n\prod_{j=1}^n\text{Fib}[\gcd(i,j)]\;\text{mod}\;10^9+7$的值
令$n\leq m$,则有:
\begin{aligned}
\prod_{i=1}^n\prod_{j=1}^nf[\gcd(i,j)]
&=\prod_{d=1}^n\prod_{i=1}^\frac nd\prod_{j=1}^\frac md\text{Fib}[d]^{[\gcd(i,j)=1]}\\
&=\prod_{d=1}^n\text{Fib}[d]^{\sum_{i=1}^n\sum_{j=1}^m[\gcd(i,j)=d]}\\
&=\prod_{d=1}^n\text{Fib}[d]^{\sum_{i=1}^{\left\lfloor\frac nk\right\rfloor}\sum_{j=1}^{\left\lfloor\frac mk\right\rfloor}\sum_{k|\gcd(i,j)}\mu(k)}\\
&=\prod_{d=1}^n\text{Fib}[d]^{\sum_{i=1}^{\left\lfloor\frac nk\right\rfloor}\sum_{j=1}^{\left\lfloor\frac mk\right\rfloor}\sum_{k|i}\sum_{k|j}\mu(k)}\\
&=\prod_{d=1}^n\text{Fib}[d]^{\sum_{i=1}^{\left\lfloor\frac nk\right\rfloor}\sum_{k|i}\sum_{j=1}^{\left\lfloor\frac mk\right\rfloor}\sum_{k|j}\mu(k)}\\
&=\prod_{d=1}^n\text{Fib}[d]^{\sum_{i=1}^{\min\left(\left\lfloor\frac nk\right\rfloor,\left\lfloor\frac mk\right\rfloor\right)}\mu(k)\sum_{i=1}^{\left\lfloor\frac nk\right\rfloor}\sum_{k|i}\sum_{j=1}^{\left\lfloor\frac mk\right\rfloor}\sum_{k|j}1}\\
&=\prod_{d=1}^n\text{Fib}[d]^{\sum_{i=1}^{\min\left(\left\lfloor\frac nk\right\rfloor,\left\lfloor\frac mk\right\rfloor\right)}\mu(k)\sum_{i=1}^{\left\lfloor\frac nk\right\rfloor}\sum_{k|i}1\sum_{j=1}^{\left\lfloor\frac mk\right\rfloor}\sum_{k|j}1}\\
\end{aligned}
...To be continue.
SDOI2017数字表格的更多相关文章
- BZOJ:4816: [Sdoi2017]数字表格
4816: [Sdoi2017]数字表格 Time Limit: 50 Sec Memory Limit: 128 MBSubmit: 501 Solved: 222[Submit][Status ...
- [Sdoi2017]数字表格 [莫比乌斯反演]
[Sdoi2017]数字表格 题意:求 \[ \prod_{i=1}^n \prod_{j=1}^m f[(i,j)] \] 考场60分 其实多推一步就推倒了... 因为是乘,我们可以放到幂上 \[ ...
- 【BZOJ 4816】 4816: [Sdoi2017]数字表格 (莫比乌斯)
4816: [Sdoi2017]数字表格 Time Limit: 50 Sec Memory Limit: 128 MBSubmit: 666 Solved: 312 Description Do ...
- P3704 [SDOI2017]数字表格
P3704 [SDOI2017]数字表格 链接 分析: $\ \ \ \prod\limits_{i = 1}^{n} \prod\limits_{j = 1}^{m} f[gcd(i, j)]$ $ ...
- [SDOI2017]数字表格 --- 套路反演
[SDOI2017]数字表格 由于使用markdown的关系 我无法很好的掌控格式,见谅 对于这么简单的一道题竟然能在洛谷混到黑,我感到无语 \[\begin{align*} \prod\limits ...
- 题解-[SDOI2017]数字表格
题解-[SDOI2017]数字表格 前置知识: 莫比乌斯反演</> [SDOI2017]数字表格 \(T\) 组测试数据,\(f_i\) 表示 \(\texttt{Fibonacci}\) ...
- [SDOI2017]数字表格 & [MtOI2019]幽灵乐团
P3704 [SDOI2017]数字表格 首先根据题意写出答案的表达式 \[\large\prod_{i=1}^n\prod_{j=1}^mf_{\gcd(i,j)} \] 按常规套路改为枚举 \(d ...
- bzoj4816 [Sdoi2017]数字表格
Description Doris刚刚学习了fibonacci数列.用f[i]表示数列的第i项,那么 f[0]=0 f[1]=1 f[n]=f[n-1]+f[n-2],n>=2 Doris用老师 ...
- [SDOI2017]数字表格
Description Doris刚刚学习了fibonacci数列.用f[i]表示数列的第i项,那么 f[0]=0 f[1]=1 f[n]=f[n-1]+f[n-2],n>=2 Doris用老师 ...
- 【刷题】BZOJ 4816 [Sdoi2017]数字表格
Description Doris刚刚学习了fibonacci数列.用f[i]表示数列的第i项,那么 f[0]=0 f[1]=1 f[n]=f[n-1]+f[n-2],n>=2 Doris用老师 ...
随机推荐
- MVC.Net:MVC.Net与WebAPI的IOC实现
我们通过Ninject(http://www.ninject.org/)项目来帮助我们实现MVC.Net与WebAPI项目的IOC实现. 首先我们来看MVC.Net的IOC实现. 1. 通过NuGet ...
- HDU 4516
此题不难,但我就是RE,搞不懂啊...郁闷. 说下基本算法吧,只要留意到要分解的因式是(x+ai)..的形式,x前是系数为1的,而且,它们的绝对值在1000以内,于是,好办了.只要枚举(x+k)中的k ...
- cppunit 的使用
原文: http://blog.csdn.net/abcdef0966/article/details/5699248
- HDU1698 Just a Hook 【线段树】+【成段更新】+【lazy标记】
Just a Hook Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tota ...
- selenium获取弹窗提示
1.点击保存给的提示是几秒钟,遮罩显示 2. 其他弹窗处理方法 http://blog.csdn.net/Real_Tino/article/details/59068827
- tensorflow 模型压缩
模型压缩 为了将tensorflow深度学习模型部署到移动/嵌入式设备上,我们应该致力于减少模型的内存占用,缩短推断时间,减少耗电.有几种方法可以实现这些要求,如量化.权重剪枝或将大模型提炼成小模型. ...
- ningbooj--1655--木块拼接(贪心)
[1655] 木块拼接 时间限制: 1000 ms 内存限制: 65535 K 问题描述 好奇的skyv95想要做一个正方形的木块,现在有三种颜色的矩形木块,颜色分别为"A" ...
- bzoj2503 相框——思路
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2503 思路题: 首先,这种问题应该注意到答案只跟度数有关,跟其他什么连接方法之类的完全无关: ...
- 杂项-Company:ShineYoo
ylbtech-杂项-Company:ShineYoo 1. 网站返回顶部 1. 2. 3. 4. 2. 网站测试返回顶部 1. 2. 3.家服宝返回顶部 0.首页 http://www.jiafb. ...
- LeetCode.5-最长回文子串(Longest Palindromic Substring)
这是悦乐书的第342次更新,第366篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Medium级别的第3题(顺位题号是5).给定一个字符串s,找到s中最长的回文子字符串. 您可以假设s ...