求$\prod_{i=1}^n\prod_{j=1}^n\text{Fib}[\gcd(i,j)]\;\text{mod}\;10^9+7$的值
令$n\leq m$,则有:

\begin{aligned}
\prod_{i=1}^n\prod_{j=1}^nf[\gcd(i,j)]
&=\prod_{d=1}^n\prod_{i=1}^\frac nd\prod_{j=1}^\frac md\text{Fib}[d]^{[\gcd(i,j)=1]}\\
&=\prod_{d=1}^n\text{Fib}[d]^{\sum_{i=1}^n\sum_{j=1}^m[\gcd(i,j)=d]}\\
&=\prod_{d=1}^n\text{Fib}[d]^{\sum_{i=1}^{\left\lfloor\frac nk\right\rfloor}\sum_{j=1}^{\left\lfloor\frac mk\right\rfloor}\sum_{k|\gcd(i,j)}\mu(k)}\\
&=\prod_{d=1}^n\text{Fib}[d]^{\sum_{i=1}^{\left\lfloor\frac nk\right\rfloor}\sum_{j=1}^{\left\lfloor\frac mk\right\rfloor}\sum_{k|i}\sum_{k|j}\mu(k)}\\
&=\prod_{d=1}^n\text{Fib}[d]^{\sum_{i=1}^{\left\lfloor\frac nk\right\rfloor}\sum_{k|i}\sum_{j=1}^{\left\lfloor\frac mk\right\rfloor}\sum_{k|j}\mu(k)}\\
&=\prod_{d=1}^n\text{Fib}[d]^{\sum_{i=1}^{\min\left(\left\lfloor\frac nk\right\rfloor,\left\lfloor\frac mk\right\rfloor\right)}\mu(k)\sum_{i=1}^{\left\lfloor\frac nk\right\rfloor}\sum_{k|i}\sum_{j=1}^{\left\lfloor\frac mk\right\rfloor}\sum_{k|j}1}\\
&=\prod_{d=1}^n\text{Fib}[d]^{\sum_{i=1}^{\min\left(\left\lfloor\frac nk\right\rfloor,\left\lfloor\frac mk\right\rfloor\right)}\mu(k)\sum_{i=1}^{\left\lfloor\frac nk\right\rfloor}\sum_{k|i}1\sum_{j=1}^{\left\lfloor\frac mk\right\rfloor}\sum_{k|j}1}\\
\end{aligned}

...To be continue.

SDOI2017数字表格的更多相关文章

  1. BZOJ:4816: [Sdoi2017]数字表格

    4816: [Sdoi2017]数字表格 Time Limit: 50 Sec  Memory Limit: 128 MBSubmit: 501  Solved: 222[Submit][Status ...

  2. [Sdoi2017]数字表格 [莫比乌斯反演]

    [Sdoi2017]数字表格 题意:求 \[ \prod_{i=1}^n \prod_{j=1}^m f[(i,j)] \] 考场60分 其实多推一步就推倒了... 因为是乘,我们可以放到幂上 \[ ...

  3. 【BZOJ 4816】 4816: [Sdoi2017]数字表格 (莫比乌斯)

    4816: [Sdoi2017]数字表格 Time Limit: 50 Sec  Memory Limit: 128 MBSubmit: 666  Solved: 312 Description Do ...

  4. P3704 [SDOI2017]数字表格

    P3704 [SDOI2017]数字表格 链接 分析: $\ \ \ \prod\limits_{i = 1}^{n} \prod\limits_{j = 1}^{m} f[gcd(i, j)]$ $ ...

  5. [SDOI2017]数字表格 --- 套路反演

    [SDOI2017]数字表格 由于使用markdown的关系 我无法很好的掌控格式,见谅 对于这么简单的一道题竟然能在洛谷混到黑,我感到无语 \[\begin{align*} \prod\limits ...

  6. 题解-[SDOI2017]数字表格

    题解-[SDOI2017]数字表格 前置知识: 莫比乌斯反演</> [SDOI2017]数字表格 \(T\) 组测试数据,\(f_i\) 表示 \(\texttt{Fibonacci}\) ...

  7. [SDOI2017]数字表格 & [MtOI2019]幽灵乐团

    P3704 [SDOI2017]数字表格 首先根据题意写出答案的表达式 \[\large\prod_{i=1}^n\prod_{j=1}^mf_{\gcd(i,j)} \] 按常规套路改为枚举 \(d ...

  8. bzoj4816 [Sdoi2017]数字表格

    Description Doris刚刚学习了fibonacci数列.用f[i]表示数列的第i项,那么 f[0]=0 f[1]=1 f[n]=f[n-1]+f[n-2],n>=2 Doris用老师 ...

  9. [SDOI2017]数字表格

    Description Doris刚刚学习了fibonacci数列.用f[i]表示数列的第i项,那么 f[0]=0 f[1]=1 f[n]=f[n-1]+f[n-2],n>=2 Doris用老师 ...

  10. 【刷题】BZOJ 4816 [Sdoi2017]数字表格

    Description Doris刚刚学习了fibonacci数列.用f[i]表示数列的第i项,那么 f[0]=0 f[1]=1 f[n]=f[n-1]+f[n-2],n>=2 Doris用老师 ...

随机推荐

  1. 【LeetCode OJ 232】Implement Queue using Stacks

    题目链接:https://leetcode.com/problems/implement-queue-using-stacks/ 题目:Implement the following operatio ...

  2. NS3网络仿真(2):first.py

    1    安装基本模块 11  安装Python 12  安装PTVS 13  加入对python-279的支持 2    在vs2013下编译NS3 3    编译NetAnim 4    在vs2 ...

  3. NS3网络仿真(5): 数据包分析

    快乐虾 http://blog.csdn.net/lights_joy/ 欢迎转载,但请保留作者信息 在我们生成的xml文件里.是不包括生成的数据包的数据的,在我们的脚本中加入以下的语句: point ...

  4. Android之——常见Bug及其解决方式

    转载请注明出处:http://blog.csdn.net/l1028386804/article/details/46942139 1.android.view.WindowManager$BadTo ...

  5. Why is try {…} finally {…} good; try {…} catch{} bad?

    http://stackoverflow.com/questions/128818/why-is-try-finally-good-try-catch-bad The big difference i ...

  6. 【撸码caffe四】 solver.cpp&&sgd_solver.cpp

    caffe中solver的作用就是交替低啊用前向(forward)算法和后向(backward)算法来更新参数,从而最小化loss,实际上就是一种迭代的优化算法. solver.cpp中的Solver ...

  7. poj1041 John's trip——字典序欧拉回路

    题目:http://poj.org/problem?id=1041 求字典序欧拉回路: 首先,如果图是欧拉图,就一定存在欧拉回路,直接 dfs 即可,不用 return 判断什么的,否则TLE... ...

  8. JPA新增entity时自动填充时间,例创建时间,修改时间

    背景:springboot项目,集成JPA,与数据库交互的entity,与用户交互的DTO 问题:添加酒店时,两个字段create_time,update_time,前端不传数据,如果赋值 解决: 1 ...

  9. golang单点推送

    package main import ( "encoding/json" "flag" "fmt" "log" &qu ...

  10. android view、viewgroup 事件响应拦截处理机制

    文章中会用到部分网络资源,首先将原作者的链接附上. 但是还是会附上数量较大的关于此部分内容的自己的思考. ----------------------------------------------- ...