[BZOJ3884] 上帝与集合的正确用法 (欧拉函数)
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=3884
题目大意:
给出 M, 求 $2^{2^{2^{2^{...}}}}$ % M 的值. p ≤ 1e9
题解:
我们设 M = $2^k$*p , p是奇数
$2^{2^{2^{2^{...}}}}$ % M = $2^k$ * ($2^{2^{2^{2^{...}}}-k}$ % p)
因为p是奇数,所以p与2互质,我们可以用欧拉定理
原式化为
可以递归地做下去
但模数变成1的时候直接返回0就好了
参考某大佬博客的时间复杂度:
AC代码如下:
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
using namespace std;
typedef long long ll; int T;
inline int read()
{
char ch=getchar();
int s=,f=;
while (!(ch>=''&&ch<='')) {if (ch=='-') f=-;ch=getchar();}
while (ch>=''&&ch<='') {s=(s<<)+(s<<)+ch-'';ch=getchar();}
return s*f;
}
int qpow(ll a,int b,int m)
{
ll res=;
for (;b;b>>=,a=a*a%m) if (b&) res=res*a%m;
return res%m;
}
int phi(int x)
{
int res=x;
for (int i=;i*i<=x;i++)
{
if (x%i) continue;
res/=i;res*=i-;
while (x%i==) x/=i;
}
if (x>) res/=x,res*=x-;
return res;
}
int solve(int p)
{
if (p==) return ;
int k=;
while (~p&) p>>=,k++;
int phi_p=phi(p);
int re=solve(phi_p);
re=(re+phi_p-k%phi_p)%phi_p;
re=qpow(,re,p);
return re<<k;
}
int main()
{
T=read();
while (T--)
{
int p=read();
printf("%d\n",solve(p));
}
return ;
}
[BZOJ3884] 上帝与集合的正确用法 (欧拉函数)的更多相关文章
- BZOJ3884: 上帝与集合的正确用法(欧拉函数 扩展欧拉定理)
Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 3860 Solved: 1751[Submit][Status][Discuss] Descripti ...
- [bzoj3884]上帝与集合的正确用法——欧拉函数
题目大意 题解 出题人博客 代码 #include <bits/stdc++.h> using namespace std; const int M = 10001000; int phi ...
- bzoj3884: 上帝与集合的正确用法 欧拉降幂公式
欧拉降幂公式:http://blog.csdn.net/acdreamers/article/details/8236942 糖教题解处:http://blog.csdn.net/skywalkert ...
- BZOJ 3884: 上帝与集合的正确用法 [欧拉降幂]
PoPoQQQ大爷太神了 只要用欧拉定理递归下去就好了.... 然而还是有些细节没考虑好: $(P,2) \neq 1$时分解$P=2^k*q$的形式,然后变成$2^k(2^{(2^{2^{...}} ...
- BZOJ3884: 上帝与集合的正确用法 拓展欧拉定理
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...
- bzoj千题计划264:bzoj3884: 上帝与集合的正确用法
http://www.lydsy.com/JudgeOnline/problem.php?id=3884 欧拉降幂公式 #include<cmath> #include<cstdio ...
- bzoj3884: 上帝与集合的正确用法(数论)
感觉是今天洛谷月赛T3的弱化版,会写洛谷T3之后这题一眼就会写了... 还是欧拉扩展定理 于是就在指数上递归%phi(p)+phi(p)直到1,则后面的指数就都没用了,这时候返回,边回溯边快速幂.因为 ...
- BZOJ3884 上帝与集合的正确用法(欧拉函数)
设f(n)为模n时的答案,由2k mod n=2k mod φ(n)+φ(n) mod n(并不会证),且k mod φ(n)=f(φ(n)),直接就可以得到一个递推式子.记搜一发即可. #inclu ...
- bzoj3884上帝与集合的正确用法
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...
随机推荐
- intellij idea 打开两个 terminal
intellij idea 打开两个 terminal alt+f12可以打开terminal,在terminal窗口左侧点击绿色的加号,就可以又打开一个terminal,用tab标签展示:
- DSAPI多功能组件编程应用-DS提示气泡
首先下载DSAPI.dll.并在项目中引用. 该功能包括在DSAPI1.0.1.1及更高版本号,DLL请到本人资源里查找. Private Sub Button1_Click(sender As Ob ...
- Java的接口总结
Java最主要的封装是class.除此之外还有接口interface. 这段时间一直在想接口有什么作用呢.有了接口有哪些优点呢.结合网络上各位大神的文章,接口的作用大概体如今下面几个方面. 1.回调 ...
- PE文件结构(三) 输入表
PE文件结构(三) 參考 书:<加密与解密> 视频:小甲鱼 解密系列 视频 输入表 输入函数,表示被程序调用可是它的代码不在程序代码中的,而在dll中的函数.对于这些函数.磁盘上的可执行文 ...
- bzoj5157: [Tjoi2014]上升子序列(树状数组LIS)
5157: [Tjoi2014]上升子序列 题目:传送门 题解: 学一下nlogn的树状数组求最长上生子序列就ok(%爆大佬) 离散化之后,用一个数组记录一下,直接树状数组做 吐槽:妈耶...一开始不 ...
- ORACLE里锁的几种模式
0:none 1:null 空 2:Row-S 行共享(RS):共享表锁 3:Row-X 行专用(RX):用于行的修改 4:Share 共享锁(S):阻止其他DML操作 5:S/Row-X ...
- TCP、HTTP协议的RPC
TCP.HTTP协议的RPC 1.1 基于TCP协议的RPC 1.1.1 RPC名词解释 RPC的全称是Remote Process Call,即远程过程调用,RPC的实现包括客户端和服务端,即服务调 ...
- Codeforces 986B. Petr and Permutations(没想到这道2250分的题这么简单,早知道就先做了)
这题真的只能靠直觉了,我没法给出详细证明. 解题思路: 1.交换3n次或者7n+1次,一定会出现一个为奇数,另一个为偶数. 2.用最朴素的方法,将n个数字归位,计算交换次数. 3.判断交换次数是否与3 ...
- rem 使用
html{ font-size:12px; } .btn { width: 6rem; height: 3rem; line-height: 3rem; font-size: 2rem; displa ...
- 高阶函数-lambda表达式
#2.6 map()# 第一个参数传入一个函数,,第二个参数为一个可迭代对象li_1 = (1,3,5,7)def funcA(x): return x*xm1 = map(funcA,li_1)pr ...