1005: [HNOI2008]明明的烦恼

题目:传送门

题解:

   毒瘤题啊天~

   其实思考的过程还是比较简单的。。。

   首先当然还是要了解好prufer序列的基本性质啦

   那么和1211大体一致,主要还是利用组合数学:

   首先我们把度数和-n记录为sum,那么根据prufer序列,序列的元素个数就是n-2

   那就是要在n-2个位置中选sum个,然后就是分别根据度数要求算每个元素在sum个位置中的方案,然后乘起来。最后还要乘上没有度数要求的元素的方案数就...ok啦

   思考两分钟...代码两小时...太菜啦!!!!

代码:

 #include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#define qread(x) x=read()
using namespace std;
inline int read()
{
int f=,x=;char ch;
while(ch<'' || ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<=''){x=x*+ch-'';ch=getchar();}
return f*x;
}
struct node
{
int len,a[];
node(){memset(a,,sizeof(a));}
}no,n1;
void chengfa(int x)
{
int i;
for(i=;i<=no.len;i++)no.a[i]=no.a[i]*x;
for(i=;i<=no.len;i++)
{
no.a[i+]+=no.a[i]/;
no.a[i]%=;
}
i=no.len;
while(no.a[i+]>)
{
i++;
no.a[i+]+=no.a[i]/;
no.a[i]%=;
}
no.len=i;
while(no.a[no.len]== && no.len>)no.len--;
}
bool pd(int x)
{
if(x<)return false;
double t=sqrt(double(x+));
for(int i=;i<=t;i++)
if(x%i==)
return false;
return true;
}
int n,d[],pr[],s[];
int main()
{
scanf("%d",&n);int cnt=,sum=;
if(n==){qread(d[]);if(d[]){printf("0\n");return ;}else {printf("1\n");return ;}}
for(int i=;i<=n;i++)
{
qread(d[i]);
if(d[i]==){printf("0\n");}
if(d[i]==-)cnt++;
else d[i]-=,sum+=d[i];
}
if(sum>n-){printf("0\n");return ;}
if(sum<n- && cnt==){printf("0\n");return ;}
int len=;
for(int i=;i<=n;i++)if(pd(i))pr[++len]=i;
for(int i=;i<=n-;i++)
{
int x=i;
for(int j=;j<=len;j++)
while(x%pr[j]== && x!=)
s[j]++,x/=pr[j];
}
for(int i=;i<=n--sum;i++)
{
int x=i;
for(int j=;j<=len;j++)
while(x%pr[j]== && x!=)
s[j]--,x/=pr[j];
}
for(int i=;i<=n;i++)
if(d[i]>)
{
for(int k=;k<=d[i];k++)
{
int x=k;
for(int j=;j<=len;j++)
while(x%pr[j]== && x!=)
s[j]--,x/=pr[j];
}
}
no.a[]=;no.len=;
for(int i=;i<=len;i++)
while(s[i]--)
chengfa(pr[i]);
for(int i=;i<=n--sum;i++)chengfa(cnt);
for(int i=no.len;i>=;i--)
printf("%d",no.a[i]);
printf("\n");
return ;
}

  

bzoj1005: [HNOI2008]明明的烦恼(prufer+高精度)的更多相关文章

  1. [bzoj1005][HNOI2008]明明的烦恼-Prufer编码+高精度

    Brief Description 给出标号为1到N的点,以及某些点最终的度数,允许在 任意两点间连线,可产生多少棵度数满足要求的树? Algorithm Design 结论题. 首先可以参考这篇文章 ...

  2. [BZOJ1005] [HNOI2008] 明明的烦恼 (prufer编码)

    Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为N ...

  3. bzoj1005: [HNOI2008]明明的烦恼 prufer序列

    https://www.lydsy.com/JudgeOnline/problem.php?id=1005 给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的 ...

  4. BZOJ 1005 [HNOI2008]明明的烦恼 (Prufer编码 + 组合数学 + 高精度)

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5786  Solved: 2263[Submit][Stat ...

  5. bzoj1005 [HNOI2008]明明的烦恼

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3032  Solved: 1209 Description ...

  6. bzoj 1005: [HNOI2008]明明的烦恼 prufer编号&&生成树计数

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2248  Solved: 898[Submit][Statu ...

  7. BZOJ 1005: [HNOI2008]明明的烦恼( 组合数学 + 高精度 )

    首先要知道一种prufer数列的东西...一个prufer数列和一颗树对应..然后树上一个点的度数-1是这个点在prufer数列中出现次数..这样就转成一个排列组合的问题了.算个可重集的排列数和组合数 ...

  8. bzoj 1005 [HNOI2008] 明明的烦恼 (prufer编码)

    [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5907  Solved: 2305[Submit][Status][Di ...

  9. BZOJ1005 HNOI2008明明的烦恼(prufer+高精度)

    每个点的度数=prufer序列中的出现次数+1,所以即每次选一些位置放上某个点,答案即一堆组合数相乘.记一下每个因子的贡献分解一下质因数高精度乘起来即可. #include<iostream&g ...

随机推荐

  1. C/C++ 名正则言顺

    本系列文章由 @yhl_leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/50532701 名称所表达的含义极其丰富 ...

  2. group_concat函数

  3. _00017 Kafka的体系结构介绍以及Kafka入门案例(0基础案例+Java API的使用)

    博文作者:妳那伊抹微笑 itdog8 地址链接 : http://www.itdog8.com(个人链接) 博客地址:http://blog.csdn.net/u012185296 博文标题:_000 ...

  4. 2016 ICPC CAMP Recording

    等了好久终于等到今天 马上能和群巨们一起学习了 希望不要暴露我太弱的本质............ 北京不冷,就是风大~~~ 1.24 8点准时起床了,准备下楼吃早饭 (这个宾馆好多美美的空姐对面就是东 ...

  5. NOIP2017提高组模拟赛5 (总结)

    NOIP2017提高组模拟赛5 (总结) 第一题 最远 奶牛们想建立一个新的城市.它们想建立一条长度为N (1 <= N <= 1,000,000)的 主线大街,然后建立K条 (2 < ...

  6. Ubuntu16.04下Mongodb官网安装部署步骤(图文详解)(博主推荐)

    不多说,直接上干货! 在这篇博客里,我采用了非官网的安装步骤,来进行安装.走了弯路,同时,也是不建议.因为在大数据领域和实际生产里,还是要走正规的为好. Ubuntu16.04下Mongodb(离线安 ...

  7. IEEE的论文需要注意的一些

    详细看最近的IEEE会议模板的时候,忽然注意到表的注序号应该用字母:另外,引用未发表的论文,如果是archive上的要使用archive规定的方法,或者标注``unpublished''

  8. (转载) Android开发mac /dev/kvm is not found

    Android开发mac /dev/kvm is not found 标签: KVMAndroid开发KVM is not found芒果Android芒果iOS 2016-10-29 16:31 2 ...

  9. BootStrap学习(三)——重写首页之导航栏和轮播图

    1.按钮 1)帮助文档:http://v3.bootcss.com/css/#buttons 2).btn-lg..btn-sm..btn-xs可以设置按钮的不同尺寸 3).active类设置按钮的激 ...

  10. ZOJ 2883 Shopaholic【贪心】

    解题思路:给出n件物品,每买三件,折扣为这三件里面最便宜的那一件即将n件物品的价值按降序排序,依次选择a[3],a[6],a[9]----a[3*k] Shopaholic Time Limit: 2 ...