[HNOI2008]水平可见直线 单调栈
题目描述:
在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为
可见的,否则Li为被覆盖的.
例如,对于直线:
L1:y=x; L2:y=-x; L3:y=0
则L1和L2是可见的,L3是被覆盖的.
给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线.
题解:
一道很好的思维题。
1.简单手画一下,能被看到的直线应该是所有直线一起围成的大凸包。
2.由于是凸包,我们考虑将所有直线按斜率排序,从小到大依次加入到平面直角坐标系中。
3.我们考虑一下新加入直线的情况:
在这种情况中,我们可以看到新加入的红色直线与加入之前平面中斜率第二大的直线的交点位于先前第一大与第二大之左,显然,这就会挡住平面中斜率第二大的直线,我们就将该直线弹出,直到找到一个交点在新加入直线的交点左侧。
对于整个过程,直线的斜率单调递增,交点横坐标也单调递增,直接用单调栈维护即可。
时间复杂度为 $O(n)$
Code:
#include<cstdio>
#include<algorithm>
#include<string>
using namespace std;
void setIO(string a){
freopen((a+".in").c_str(),"r",stdin);
}
const int maxn=100000+5;
struct Line{
double slope, y;
}line[maxn];
int arr[maxn],ans[maxn],S[maxn],top;
bool cmp(int i,int j){
if(line[i].slope==line[j].slope) return line[i].y>line[j].y;
return line[i].slope<line[j].slope;
}
double get(int i,int j){
return (line[i].y-line[j].y)/(line[j].slope-line[i].slope);
}
int main(){
//setIO("input");
int n;
scanf("%d",&n);
for(int i=1;i<=n;++i) {
scanf("%lf%lf",&line[i].slope,&line[i].y);
arr[i]=i;
}
sort(arr+1,arr+1+n,cmp);
for(int i=1;i<=n;++i)
{
int cur=arr[i]; if(line[cur].slope==line[arr[i-1]].slope && i!=1) continue;
while(top>1 && get(S[top],S[top-1])>=get(arr[i],S[top])) --top;
S[++top]=cur;
ans[top]=cur;
}
sort(ans+1,ans+1+top);
for(int i=1;i<=top;++i) printf("%d ",ans[i]);
return 0;
}
[HNOI2008]水平可见直线 单调栈的更多相关文章
- BZOJ1007: [HNOI2008]水平可见直线(单调栈)
Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 8638 Solved: 3327[Submit][Status][Discuss] Descripti ...
- bzoj1007: [HNOI2008]水平可见直线 单调栈维护凸壳
在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=-x; L3 ...
- bzoj1007 [HNOI2008]水平可见直线——单调栈
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1007 可以把直线按斜率从小到大排序,用单调栈维护,判断新直线与栈顶的交点和栈顶与它之前直线的 ...
- bzoj1007/luogu3194 水平可见直线 (单调栈)
先按斜率从小到大排序,然后如果排在后面的点B和前面的点A的交点是P,那B会把A在P的右半段覆盖掉,A会把B在P的左半段覆盖掉. 然后如果我们现在又进来了一条线,它跟上一条的交点还在上一条和上上条的左边 ...
- bzoj 1007 [HNOI2008]水平可见直线(单调栈)
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 5120 Solved: 1899[Submit][Sta ...
- BZOJ 1007 [HNOI2008]水平可见直线 (栈)
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 7940 Solved: 3030[Submit][Sta ...
- BZOJ 1007: [HNOI2008]水平可见直线 栈/计算几何
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MB 题目连接 http://www.lydsy.com/JudgeOnline ...
- 【BZOJ1007】[HNOI2008]水平可见直线 半平面交
[BZOJ1007][HNOI2008]水平可见直线 Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见 ...
- 【bzoj1007】[HNOI2008]水平可见直线
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 5932 Solved: 2254[Submit][Sta ...
随机推荐
- [jzoj 5930] [NOIP2018模拟10.26】山花 解题报告 (质因数分类)
题目链接: http://172.16.0.132/senior/#contest/show/2538/2 题目: 小S决定从某一个节点$u$开始对其子树中与$u$距离小于$K$的节点代表的花树进行采 ...
- [JZOJ 5852] [NOIP2018提高组模拟9.6] 相交 解题报告 (倍增+LCA)
题目链接: http://172.16.0.132/senior/#main/show/5852 题目: 题目大意: 多组询问,每次询问树上两条链是否相交 题解: 两条链相交并且仅当某一条链的两个端点 ...
- Re:从 0 开始的微服务架构--(三)微服务架构 API 的开发与治理--转
原文来自:聊聊架构公众号 前面的文章中有说到微服务的通信方式,Martin Folwer 先生在他对微服务的定义中也提到“每个服务运行在其独立的进程中,服务与服务间采用 轻量级的通信机制 互相协作(通 ...
- Nodemailer 报错
{ [Error: connect ECONNREFUSED] code: ‘ECONNREFUSED’, errno: ‘ECONNREFUSED’, syscall: ‘connect’ } 如果 ...
- c#学习0217
1 继承 继承 1 子类是否继承了父类的构造函数 答案:子类并没有继承父类的构造函数 但是子类或默认调用父类的无参数的构造函数 在子类中创建父类对象 这样子类才可以使用父类的成员 如果在父类中声明了有 ...
- Servlet中文乱码原因 解决 Get 和 Post 和客户端
一.Get方式的中文乱码 1) 使用如下页面表单内容: <form action="http://127.0.0.1:8080/day07/params" method=&q ...
- CorelDRAW X6低价再次冲破底线
平时我们看到的标志设计.杂志排版.产品商标.插图描画......这些都是设计师们使用CorelDRAW设计而来.如今CorelDRAW已经成为每个设计师必装的软件,从12年发布CorelDRAW X6 ...
- tomcat更改日志路径
共有2个地方需要更改. 1. tomcat/conf/logging.properties 步骤1--查找:grep logs logging.properties 步骤2--替换:sed -i ...
- n阶方阵,数字从1~n^2,顺时针增大
运行结果如下图: 解题思路:可以将这个问题分解成x个外围正方形所围成的图形,外围的正方形又可以分为4个步骤,向右依次增大.向下依次增大.向左依次增大.向上依次增大.基本思路就是如此,最关键的就是什么时 ...
- 大数相乘(牛客网ac通过)
2019-05-172019-05-17 大数相乘基本思想: 相乘相加,只不过大于10先不进位到计算完后统一进位 #include <iostream> #include <stri ...