Zero Escape

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)

Total Submission(s): 864    Accepted Submission(s): 438

Problem Description
Zero Escape, is a visual novel adventure video game directed by Kotaro Uchikoshi (you may hear about ever17?) and developed by Chunsoft.



Stilwell is enjoying the first chapter of this series, and in this chapter digital root is an important factor. 



This is the definition of digital root on Wikipedia:

The digital root of a non-negative integer is the single digit value obtained by an iterative process of summing digits, on each iteration using the result from the previous iteration to compute a digit sum. The process continues until a single-digit number
is reached.

For example, the digital root of 65536 is 7,
because 6+5+5+3+6=25 and 2+5=7.



In the game, every player has a special identifier. Maybe two players have the same identifier, but they are different players. If a group of players want to get into a door numbered X(1≤X≤9),
the digital root of their identifier sum must be X.

For example, players {1,2,6} can
get into the door 9,
but players {2,3,3} can't.



There is two doors, numbered A and B.
Maybe A=B,
but they are two different door.

And there is n players,
everyone must get into one of these two doors. Some players will get into the door A,
and others will get into the door B.

For example: 

players are {1,2,6}, A=9, B=1

There is only one way to distribute the players: all players get into the door 9.
Because there is no player to get into the door 1,
the digital root limit of this door will be ignored.



Given the identifier of every player, please calculate how many kinds of methods are there, mod 258280327.
 
Input
The first line of the input contains a single number T,
the number of test cases.

For each test case, the first line contains three integers n, A and B.

Next line contains n integers idi,
describing the identifier of every player.

T≤100, n≤105, ∑n≤106, 1≤A,B,idi≤9
 
Output
For each test case, output a single integer in a single line, the number of ways that these n players
can get into these two doors.
 
Sample Input
4
3 9 1
1 2 6
3 9 1
2 3 3
5 2 3
1 1 1 1 1
9 9 9
1 2 3 4 5 6 7 8 9
 
Sample Output
1
0
10
60
 
Author
SXYZ
 
Source
 



   题意:给出n个人的id,有两个门,每一个门有一个标号,我们记作a和b,如今我们要将n个人分成两组。进入两个门中,使得两部分人的标号的和(迭代的求,直至变成一位数)各自等于a和b,问有多少种分法,(能够全部的人进入一个门)。



pid=5389">点击打开链接

pt = j - p[i];

状态转移方程: dp[i][j] = dp[i-1][j] + dp[i-1][pt];

两种处理方法:

#include<iostream>
#include<algorithm>
#include<stdio.h>
#include<string.h>
#include<stdlib.h> using namespace std; const int N = 100001;
const int mod = 258280327;
int dp[N][10];
int n,a,b;
int p[N]; int num(int xx,int yy)
{
int t = xx + yy;
if(t%9 == 0)
{
return 9;
}
return t%9;
} int pnum(int xx,int yy)
{
int tt = xx - yy;
if(tt%9 == 0)
{
return 9;
}
if(tt%9<0)
{
return 9+(tt%9);
}
return tt%9;
} int main()
{
int T;
scanf("%d",&T);
while(T--)
{
int sum = 0;
scanf("%d%d%d",&n,&a,&b);
for(int i=1;i<=n;i++)
{
scanf("%d",&p[i]);
sum = num(sum,p[i]);
}
memset(dp,0,sizeof(dp));
dp[0][0] = 1;
for(int i=1;i<=n;i++)
{
for(int j=0;j<=9;j++)
{
dp[i][j] += dp[i-1][j];
dp[i][j] = dp[i][j]%mod;
int pt = pnum(j,p[i]);
if(pt == 9)
{
dp[i][j] += max(dp[i-1][0],dp[i-1][9]);
}
else
{
dp[i][j] += dp[i-1][pnum(j,p[i])];
}
dp[i][j] = dp[i][j]%mod;
}
}
int ans = 0;
if(num(a,b) == sum)
{
ans = dp[n][a];
if(a == sum)
{
ans--;
}
}
if(a == sum)
{
ans++;
}
if(b == sum)
{
ans++;
}
printf("%d\n",ans);
}
return 0;
}

#include<iostream>
#include<algorithm>
#include<stdio.h>
#include<string.h>
#include<stdlib.h> using namespace std; const int N = 100001;
const int mod = 258280327;
int dp[N][10];
int n,a,b;
int p[N]; int num(int xx,int yy)
{
int t = xx + yy;
if(t%9 == 0)
{
return 9;
}
return t%9;
} int main()
{
int T;
scanf("%d",&T);
while(T--)
{
int sum = 0;
scanf("%d%d%d",&n,&a,&b);
for(int i=1;i<=n;i++)
{
scanf("%d",&p[i]);
sum = num(sum,p[i]);
}
memset(dp,0,sizeof(dp));
dp[0][0] = 1;
for(int i=1;i<=n;i++)
{
for(int j=0;j<=9;j++)
{
int pt = num(j,p[i]);
dp[i][j]+=dp[i-1][j];
dp[i][pt]+=dp[i-1][j];
dp[i][j]%=mod;
dp[i][pt]%=mod;
}
}
int ans = 0;
if(num(a,b) == sum)
{
ans = dp[n][a];
if(a == sum)
{
ans--;
}
}
if(a == sum)
{
ans++;
}
if(b == sum)
{
ans++;
}
printf("%d\n",ans);
}
return 0;
}

HDU 5389 Zero Escape(DP + 滚动数组)的更多相关文章

  1. hdu 4576 (简单dp+滚动数组)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4576 题意:给出1~n的环,m个操作,每次能顺时针或逆时针走w步,询问最后在l~r这段区间内概率.(1 ...

  2. hdu5389 Zero Escape DP+滚动数组 多校联合第八场

    Zero Escape Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) To ...

  3. HDU - 2294 Pendant (DP滚动数组降维+矩阵高速功率)

    Description On Saint Valentine's Day, Alex imagined to present a special pendant to his girl friend ...

  4. hdu 5389 Zero Escape (dp)

    题目:http://acm.hdu.edu.cn/showproblem.php? pid=5389 题意:定义数根:①把每一位上的数字加起来得到一个新的数,②反复①直到得到的数仅仅有1位.给定n,A ...

  5. HDU 1024 Max Sum Plus Plus --- dp+滚动数组

    HDU 1024 题目大意:给定m和n以及n个数,求n个数的m个连续子系列的最大值,要求子序列不想交. 解题思路:<1>动态规划,定义状态dp[i][j]表示序列前j个数的i段子序列的值, ...

  6. HDU 5119 Happy Matt Friends (背包DP + 滚动数组)

    题目链接:HDU 5119 Problem Description Matt has N friends. They are playing a game together. Each of Matt ...

  7. POJ 3666 Making the Grade (DP滚动数组)

    题意:农夫约翰想修一条尽量平缓的路,路的每一段海拔是A[i],修理后是B[i],花费|A[i] – B[i]|,求最小花费.(数据有问题,代码只是单调递增的情况) #include <stdio ...

  8. USACO 2009 Open Grazing2 /// DP+滚动数组oj26223

    题目大意: 输入n,s:n头牛 s个栅栏 输入n头牛的初始位置 改变他们的位置,满足 1.第一头与最后一头的距离尽量大 2.相邻两头牛之间的距离尽量满足 d=(s-1)/(n-1),偏差不超过1 3. ...

  9. hdu 1513 && 1159 poj Palindrome (dp, 滚动数组, LCS)

    题目 以前做过的一道题, 今天又加了一种方法 整理了一下..... 题意:给出一个字符串,问要将这个字符串变成回文串要添加最少几个字符. 方法一: 将该字符串与其反转求一次LCS,然后所求就是n减去 ...

随机推荐

  1. LightOJ-1236 Pairs Forming LCM 唯一分解定理

    题目链接:https://cn.vjudge.net/problem/LightOJ-1236 题意 给一整数n,求有多少对a和b(a<=b),使lcm(a, b)=n 注意数据范围n<= ...

  2. MySQL中锁详解(行锁、表锁、页锁、悲观锁、乐观锁等)

    原文地址:http://blog.csdn.net/mysteryhaohao/article/details/51669741 锁,在现实生活中是为我们想要隐藏于外界所使用的一种工具.在计算机中,是 ...

  3. POJ3370&amp;HDU1808 Halloween treats【鸽巢原理】

    题目链接: id=3370">http://poj.org/problem?id=3370 http://acm.hdu.edu.cn/showproblem.php?pid=1808 ...

  4. Android中的消息机制

    在分析Android消息机制之前.我们先来看一段代码: public class MainActivity extends Activity implements View.OnClickListen ...

  5. spring data redis jackson 配置,工具类

    spring data redis 序列化有jdk .jackson.string 等几种类型,自带的jackson不熟悉怎么使用,于是用string类型序列化,把对象先用工具类转成string,代码 ...

  6. 编译并使用boost库(win7+boost1.63+vs2015+32位or 64位),超详细,boost于vs2017下编译(64/32bit)

    首先下载得到boost的最新版(目前最新版是1.63) 下载地址: http://www.boost.org   也可以从这里直接下载 http://download.csdn.net/detail/ ...

  7. Linux多线程实践(六)使用Posix条件变量解决生产者消费者问题

    前面的一片文章我们已经讲过使用信号量解决生产者消费者问题.那么什么情况下我们须要引入条件变量呢? 这里借用  http://www.cnblogs.com/ngnetboy/p/3521547.htm ...

  8. Find or Query Data with the mongo Shell

    https://docs.mongodb.com/getting-started/shell/query/ Overview You can use the find() method to issu ...

  9. xss  多分类 优选 贝叶斯、逻辑回归、决策树

    import re import numpy as np from sklearn import cross_validation from sklearn import datasets from ...

  10. Struts2中Struts.xml的作用

    struts.xml 为Struts 2的核心配置文件.struts.xml文件主要负责管理应用中的Action映射,以及该Action包含的Result定义等.struts.xml中主要配置Stru ...